Improving the Methane Oxidation by Self‐Adaptive Optimization of Liquid‐Metal Catalysts

催化作用 甲烷 选择性 甲醇 材料科学 化学工程 部分氧化 化学 有机化学 工程类
作者
Yuen Wu,Haoran Zhang,Yinhe Wang,Xiaokang Liu,Fan Wu,Xiaoqian Wang,Chunrong Ma,Xiao Han,Yihua Ran,Yan Zhang,Zhiwen Zhang,Qiang Xu,Zhandong Wang,Guozhen Zhang,Jing Wang,Jun Cai,Zhi Liu,Yu Zhang,Tao Yao,Jun Jiang
出处
期刊:Angewandte Chemie [Wiley]
被引量:1
标识
DOI:10.1002/anie.202421554
摘要

Methane, a major greenhouse gas and abundant carbon resource, presents significant challenges in catalysis due to its high symmetry and thermodynamic stability, which tend to cause over‐oxidation to CO2. Traditional catalysts require high temperatures and pressures to facilitate CH4 conversion, constrained by their rigid structures which lack the flexibility needed for optimizing complex reaction steps. This study introduces a novel Cu single atoms‐embedded liquid metal catalyst (Cu‐LMC) based on gallium alloys, characterized by dynamic, self‐adaptive structures that provide enhanced catalytic performance and selectivity. Our findings reveal that Cu‐LMC achieves a high methane conversion to methanol yield (5.9 mol·gCu‐1·h‐1) with a selectivity of 82%. The results show that mild surface oxidation significantly boosts the catalytic performance of Cu‐LMC by increasing active copper sites through the formation of a Cu‐O‐Ga configuration while preserving the catalyst's structural flexibility. In‐situ XPS and XAFS analyses, along with AIMD simulations, demonstrate that the Cu‐LMC enables self‐adaptive structural adjustments that lower methanol desorption energy and increase the energy barrier for by‐product formation, optimizing the overall methane conversion process. The results underscore the importance of designing catalysts with dynamic and adaptable structures to overcome traditional limitations and improve efficiency in catalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奥利给发布了新的文献求助10
1秒前
苏州河发布了新的文献求助10
1秒前
思源应助未来余主任采纳,获得10
1秒前
欣喜谷槐发布了新的文献求助10
2秒前
曲微暖完成签到 ,获得积分10
2秒前
在水一方应助陈住气采纳,获得10
3秒前
iNk应助dududu采纳,获得20
3秒前
3秒前
CipherSage应助犹豫的初丹采纳,获得10
4秒前
Hello应助KeYang采纳,获得10
4秒前
4秒前
yookia应助innoflash采纳,获得10
4秒前
852应助波比大王采纳,获得10
5秒前
Jolin完成签到,获得积分10
6秒前
灰二发布了新的文献求助10
7秒前
7秒前
ZHC发布了新的文献求助10
7秒前
毕双洲完成签到,获得积分10
9秒前
sweat发布了新的文献求助10
9秒前
邓邓完成签到 ,获得积分10
10秒前
breaddog完成签到,获得积分10
10秒前
10秒前
乐观的香菱完成签到,获得积分10
12秒前
斯文败类应助典雅的俊驰采纳,获得10
12秒前
fuje发布了新的文献求助10
12秒前
13秒前
14秒前
dududu发布了新的文献求助10
14秒前
慕青应助解语花采纳,获得10
15秒前
思源应助橘如采纳,获得10
16秒前
隐形曼青应助结实星星采纳,获得10
17秒前
17秒前
liliu完成签到,获得积分10
18秒前
18秒前
18秒前
fuje完成签到,获得积分10
18秒前
专注如冰完成签到,获得积分10
18秒前
19秒前
1514536hhh发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949241
求助须知:如何正确求助?哪些是违规求助? 3494639
关于积分的说明 11073168
捐赠科研通 3225321
什么是DOI,文献DOI怎么找? 1782931
邀请新用户注册赠送积分活动 867248
科研通“疑难数据库(出版商)”最低求助积分说明 800710