A Picture or a Thousand Words: Design Description Crafting to Replicate Human Similarity Judgments in Large Language Models

复制 计算机科学 相似性(几何) 自然语言处理 人工智能 语言模型 语言学 情报检索 图像(数学) 哲学 统计 数学
作者
M. L. Keeler,Mark Fuge,Aoran Peng,Scarlett R. Miller
标识
DOI:10.1115/detc2024-143634
摘要

Abstract Well-studied techniques that enhance diversity in early design concept generation require effective metrics for evaluating human-perceived similarity between ideas. Recent work suggests collecting triplet comparisons between designs directly from human raters and using those triplets to form an embedding where similarity is expressed as a Euclidean distance. While effective at modeling human-perceived similarity judgments, these methods are expensive and require a large number of triplets to be hand-labeled. However, what if there were a way to use AI to replicate the human similarity judgments captured in triplet embedding methods? In this paper, we explore the potential for pretrained Large Language Models (LLMs) to be used in this context. Using a dataset of crowdsourced text descriptions written about engineering design sketches, we generate LLM embeddings and compare them to an embedding created from human-provided triplets of those same sketches. From these embeddings, we can use Euclidean distances to describe areas where human perception and LLM perception disagree regarding design similarity. We then implement this same procedure but with descriptions written from a template that attempts to isolate a particular modality of a design (i.e., functions, behaviors, structures). By comparing the templated description embeddings to both the triplet-generated and pre-template LLM embeddings, we identify ways of describing designs such that LLM and human similarity perception better agree. We use these results to better understand how humans and LLMs interpret similarity in engineering designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科盲TCB完成签到,获得积分10
1秒前
sajelsch发布了新的文献求助10
1秒前
小二郎应助浏阳河采纳,获得10
1秒前
阿言完成签到,获得积分10
2秒前
丹丹发布了新的文献求助10
3秒前
水晶李发布了新的文献求助10
4秒前
5秒前
Tian完成签到,获得积分10
5秒前
AFF完成签到,获得积分10
5秒前
KMYSUDA完成签到,获得积分10
5秒前
yang发布了新的文献求助10
6秒前
6秒前
Ax1sss发布了新的文献求助10
6秒前
yyh完成签到 ,获得积分10
7秒前
sw发布了新的文献求助10
7秒前
karolyn完成签到,获得积分10
8秒前
顾矜应助时度采纳,获得10
9秒前
延边棒子完成签到,获得积分10
9秒前
小孟发布了新的文献求助10
9秒前
蒸芋芋了发布了新的文献求助10
10秒前
打打应助Kira采纳,获得10
10秒前
QL发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
所所应助YYQX采纳,获得10
12秒前
13秒前
sw完成签到,获得积分10
13秒前
英俊的铭应助调皮芷卉采纳,获得10
14秒前
尊敬电灯胆完成签到,获得积分10
14秒前
SYLH应助十一采纳,获得10
15秒前
15秒前
16秒前
16秒前
FashionBoy应助爱吃鱼的猫采纳,获得10
16秒前
17秒前
满意的芹发布了新的文献求助10
17秒前
hy完成签到 ,获得积分10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993