Incorporation of Serial 12-Lead Electrocardiogram With Machine Learning to Augment the Out-of-Hospital Diagnosis of Non-ST Elevation Acute Coronary Syndrome

医学 急性冠脉综合征 ST高程 急诊科 内科学 心电图 心脏病学 铅(地质) ST段 急诊医学 心肌梗塞 地貌学 精神科 地质学
作者
Zeineb Bouzid,Ziad Faramand,Christian Martin‐Gill,Susan M. Sereika,Clifton W. Callaway,Samir Saba,Richard E. Gregg,Fabio Badilini,Ervin Sejdić,Salah S. Al‐Zaiti
出处
期刊:Annals of Emergency Medicine [Elsevier BV]
卷期号:81 (1): 57-69 被引量:12
标识
DOI:10.1016/j.annemergmed.2022.08.005
摘要

Ischemic electrocardiogram (ECG) changes are subtle and transient in patients with suspected non-ST-segment elevation (NSTE)-acute coronary syndrome. However, the out-of-hospital ECG is not routinely used during subsequent evaluation at the emergency department. Therefore, we sought to compare the diagnostic performance of out-of-hospital and ED ECG and evaluate the incremental gain of artificial intelligence-augmented ECG analysis.This prospective observational cohort study recruited patients with out-of-hospital chest pain. We retrieved out-of-hospital-ECG obtained by paramedics in the field and the first ED ECG obtained by nurses during inhospital evaluation. Two independent and blinded reviewers interpreted ECG dyads in mixed order per practice recommendations. Using 179 morphological ECG features, we trained, cross-validated, and tested a random forest classifier to augment non ST-elevation acute coronary syndrome (NSTE-ACS) diagnosis.Our sample included 2,122 patients (age 59 [16]; 53% women; 44% Black, 13.5% confirmed acute coronary syndrome). The rate of diagnostic ST elevation and ST depression were 5.9% and 16.2% on out-of-hospital-ECG and 6.1% and 12.4% on ED ECG, with ∼40% of changes seen on out-of-hospital-ECG persisting and ∼60% resolving. Using expert interpretation of out-of-hospital-ECG alone gave poor baseline performance with area under the receiver operating characteristic (AUC), sensitivity, and negative predictive values of 0.69, 0.50, and 0.92. Using expert interpretation of serial ECG changes enhanced this performance (AUC 0.80, sensitivity 0.61, and specificity 0.93). Interestingly, augmenting the out-of-hospital-ECG alone with artificial intelligence algorithms boosted its performance (AUC 0.83, sensitivity 0.75, and specificity 0.95), yielding a net reclassification improvement of 29.5% against expert ECG interpretation.In this study, 60% of diagnostic ST changes resolved prior to hospital arrival, making the ED ECG suboptimal for the inhospital evaluation of NSTE-ACS. Using serial ECG changes or incorporating artificial intelligence-augmented analyses would allow correctly reclassifying one in 4 patients with suspected NSTE-ACS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
check003完成签到,获得积分10
1秒前
简简完成签到,获得积分10
2秒前
天天快乐应助庐陵流川枫采纳,获得10
3秒前
4秒前
赵雅琼关注了科研通微信公众号
5秒前
yearluren完成签到,获得积分10
5秒前
6秒前
EATING完成签到,获得积分20
8秒前
WYJ完成签到,获得积分10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
HebingTang应助科研通管家采纳,获得20
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
传奇3应助吴五五采纳,获得10
11秒前
上官若男应助ZZCrazy采纳,获得10
12秒前
复杂的兔子完成签到,获得积分10
12秒前
完美夏梦完成签到 ,获得积分20
12秒前
破三贼完成签到,获得积分10
13秒前
EATING发布了新的文献求助10
13秒前
YY发布了新的文献求助10
14秒前
Owen应助此时此刻采纳,获得10
15秒前
Hello应助stevben采纳,获得10
15秒前
18秒前
19秒前
灰色白面鸮完成签到,获得积分10
20秒前
秋作完成签到,获得积分10
20秒前
20秒前
20秒前
蓝调爱科研应助友00000采纳,获得10
21秒前
bkagyin应助独特亦旋采纳,获得10
21秒前
21秒前
狂野白梅完成签到,获得积分10
22秒前
ZhouYW应助cappuccino采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320