Thermal Comfort Model Established by Using Machine Learning Strategies Based on Physiological Parameters in Hot and Cold Environments

热舒适性 模拟 计算机科学 人工神经网络 风洞 风速 皮肤温度 人工智能 环境科学 工程类 气象学 航空航天工程 生物医学工程 物理
作者
Tseng-Fung Ho,H. L. Tsai,Chi-Chih Chuang,Dasheng Lee,Xiwei Huang,Hsiang Chen,Chin–Chi Cheng,Yaw‐Wen Kuo,Hsin‐Hung Chou,Wei‐Han Hsiao,Ching Hsu Yang,Yung‐Hui Li
出处
期刊:Indoor Air [Wiley]
卷期号:2024: 1-16 被引量:1
标识
DOI:10.1155/2024/9427822
摘要

The air-conditioning systems have become an indispensable part of our daily life for keeping the quality of life. However, to improve the thermal comfort and reduce energy consumption is crucial to use the air conditioners effectively with rapid development of artificial intelligence technology. This study explored the correlation between the response of human physiological parameters and thermal sensation voting (TSV) to evaluate the comfort level among various cold and hot stimulations. The variations of the three physiological parameters, which were body surface temperature, skin blood flow (SBF), and sweat area on the skin surface, and TSV values were all positively correlated with the stimulation amount under the stimulation of cold wind, hot wind, and heat radiation, but the relationship was not completely linear. Among the three physiological parameters, the forehead skin temperature has the closest relationship with TSV, followed by the SBF and sweat. Among three stimulations, the cold wind stimulation causes the closest relationship between TSV and forehead temperature, followed by the radiation and hot wind stimulations. Through three different machine learning models, namely, random forest (RF) model, support vector machine (SVM) model, and neural network (NN) model, the stimulation of cold wind, hot wind, and heat radiation was applied to investigate the variation of the three physiological parameters as the input of the models. Moreover, the models were evaluated and verified by TSV. The results revealed that among the three different machine learning methods, RF had the best accuracy. The established thermal comfort models can predict the real-time user’s thermal comfort feeling, so that air-conditioning equipment’s performance can be optimized to create a healthy and energy-saving comfortable environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助re采纳,获得10
刚刚
刚刚
1秒前
子璇发布了新的文献求助10
1秒前
杨鹏展完成签到,获得积分20
1秒前
英姑应助杨大海采纳,获得10
2秒前
雅杰发布了新的文献求助10
3秒前
机灵沛容发布了新的文献求助10
3秒前
周浩宇完成签到,获得积分10
4秒前
6秒前
6秒前
脑洞疼应助zhonghy0219采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
跳跃口红完成签到,获得积分10
9秒前
re给re的求助进行了留言
9秒前
dili827关注了科研通微信公众号
9秒前
10秒前
cheng完成签到 ,获得积分10
10秒前
11秒前
杨鹏展发布了新的文献求助10
11秒前
科研小白发布了新的文献求助10
11秒前
无心发布了新的文献求助10
11秒前
11秒前
12秒前
patamon完成签到 ,获得积分10
13秒前
星沉静默完成签到 ,获得积分10
14秒前
无情元菱完成签到 ,获得积分10
15秒前
15秒前
15秒前
万能图书馆应助独特的绯采纳,获得10
15秒前
17秒前
18秒前
18秒前
Asahi完成签到 ,获得积分10
18秒前
烤乳猪发布了新的文献求助10
19秒前
zhonghy0219发布了新的文献求助10
19秒前
江应怜完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196657
求助须知:如何正确求助?哪些是违规求助? 4378232
关于积分的说明 13635659
捐赠科研通 4233741
什么是DOI,文献DOI怎么找? 2322414
邀请新用户注册赠送积分活动 1320532
关于科研通互助平台的介绍 1270952