An underlying mechanism for MleR activating the malolactic enzyme pathway to enhance acid tolerance in Lacticaseibacillus paracasei L9

操纵子 苹果酸发酵 生物 抄写(语言学) 转录因子 互补 生物化学 基因 遗传学 乳酸 细菌 突变体 语言学 哲学
作者
Ran Huan,Zhipeng Cao,Zhengyuan Zhai,Xin Feng,Yanling Hao
出处
期刊:Applied and Environmental Microbiology [American Society for Microbiology]
卷期号:89 (9)
标识
DOI:10.1128/aem.00974-23
摘要

ABSTRACT Tolerance to acid stress is a crucial property of probiotics against gastric acids. The malolactic enzyme pathway is one of the most important acid resistance systems in lactic acid bacteria. It has been reported that the malolactic enzyme pathway was regulated by the transcriptional regulator, MleR. However, regulatory mechanisms underlying malolactic enzyme pathway to cope with acid stress remain unknown. In this study, the acid tolerance ability of the ΔmleR deletion strain was significantly lower than that of the wild-type strain, and the complementation of the mleR gene into the ΔmleR strain restored the acid tolerance of the ΔmleR strain, indicating that MleR was involved in acid tolerance response of Lacticaseibacillus paracasei L9. Real-time quantitative PCR and transcriptional fusion experiments confirmed MleR-activated transcription of the mleST gene cluster. Furthermore, MleR was confirmed to directly bind to the promoter region of the mleST operon using ChIP assays and EMSAs. The transcription start site G of the mleST operon was located at position −198 relative to the start codon of the mleS gene. The region from −80 to −61 upstream of the transcription start site was determined to be essential for MleR binding. Moreover, L-malic acid acted as an effector for MleR to activate the transcription of the mleST operon in a dose-dependent manner. These results revealed the regulatory mechanism behind MleR-mediated activation of the malolactic enzyme pathway to enhance acid tolerance in Lc. paracasei L9. IMPORTANCE Lacticaseibacillus paracasei is extensively used as probiotics in human health and fermented dairy production. Following consumption, Lc. paracasei is exposed to a variety of physico-chemical stresses, such as low pH in the stomach and bile salts in the intestines. The high acidity of the stomach severely inhibits bacterial metabolism and growth. Therefore, the acid tolerance response is critical for Lc. paracasei to survive. It has been reported that the malolactic enzyme (MLE) pathway plays an important role for LAB to resist acid stress. However, the regulatory mechanism has not yet been investigated. In this study, we determined that the LysR-type regulator MleR positively regulated the MLE pathway to enhance acid tolerance by binding −80 to −61 upstream of the transcription start site of the mleST operon. Further, L-malic acid acts as a co-inducer for MleR transcriptional regulation. Our study provides novel insights into acid tolerance mechanisms in LAB.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的凡白完成签到 ,获得积分10
1秒前
须臾完成签到,获得积分10
1秒前
坚强的广山应助韭菜盒子采纳,获得10
2秒前
2秒前
4秒前
科研通AI2S应助qqq采纳,获得10
4秒前
5秒前
sss完成签到 ,获得积分10
5秒前
7秒前
lalala应助培培采纳,获得10
8秒前
发嗲的炳发布了新的文献求助10
9秒前
9秒前
10秒前
淀粉肠发布了新的文献求助10
10秒前
wz发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
13秒前
14秒前
14秒前
聪哥发布了新的文献求助10
14秒前
15秒前
15秒前
白色风车发布了新的文献求助10
15秒前
16秒前
qqq发布了新的文献求助10
16秒前
17秒前
18秒前
霍凌文发布了新的文献求助10
18秒前
20秒前
沫豆应助科研通管家采纳,获得100
21秒前
酷波er应助科研通管家采纳,获得10
21秒前
沫豆应助科研通管家采纳,获得100
21秒前
songmc发布了新的文献求助10
21秒前
cctv18应助科研通管家采纳,获得10
21秒前
执着的映之完成签到,获得积分10
22秒前
小马甲应助一自文又欠采纳,获得10
22秒前
23秒前
zy发布了新的文献求助10
25秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2482269
求助须知:如何正确求助?哪些是违规求助? 2144663
关于积分的说明 5470839
捐赠科研通 1867093
什么是DOI,文献DOI怎么找? 928090
版权声明 563071
科研通“疑难数据库(出版商)”最低求助积分说明 496494