Monitoring of grain crops nitrogen status from uav multispectral images coupled with deep learning approaches

多光谱图像 人工神经网络 精准农业 分割 领域(数学) 人工智能 农业 深度学习 经济短缺 农业工程 机器学习 计算机科学 数学 地理 工程类 哲学 考古 语言学 纯数学 政府(语言学)
作者
Ivan S. Blekanov,Adam Molin,David Zhang,E. Mitrofanov,Olga А. Mitrofanova,Yin Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108047-108047 被引量:21
标识
DOI:10.1016/j.compag.2023.108047
摘要

Effective nitrogen nutrition is vital for better crop yield. In order to get the maximum yield from a field, nutrition must be spread evenly among all crops. Therefore, this paper proposes a combination of deep learning image segmentation methods to monitor nutrition across an agricultural field and detect areas with shortages of nutrients. In particular, the authors consider the applicability of five state-of-the-art neural network architectures based on U-Net to solve the nitrogen level rate segmentation problem for crops on an orthophotomap. Training, effectiveness assessment, and applicability of these neural network models are carried out by the authors on their own multi-datasets, collected by using UAS (Geoscan 401) at the Agrophysical Research Institute (ARI) experimental biopolygon for 2020–2021. The survey was performed using a MicaSense RedEdge-MX multispectral camera (5 channels in total). The total size of the collected dataset is more than 20 thousand images of two different agricultural fields (with a total area of about 62 ha). On each field, there are six test areas with known nitrogen nutrition levels (founded by agronomists). Images of these test areas are used for data augmentation and training of the above-mentioned neural network models (U-Net, Attention U-Net, R2-UNet, Attention R2-Unet, and U-Net3+). Also, in this research, an experiment was conducted to evaluate the influence of the choice of different bands of field images on the accuracy of the considered segmentation methods. The experiment showed that among all models, Attention R2U-Net (t2) proved to be more robust and reliable for different kinds of crops (accuracy 97.59–99.96%). The authors also evaluated the impact of using different combinations of image bands (such as RGB, RedEdge, NearIR, and NDVI) on the segmentation accuracy of the neural network model. The combination of RGB, NearIR, and NDVI channels allowed for the high values of all 8 metrics used in this research (0.41–1.77% more than the standard combination of RGB bands). The use of the RedEdge band has a significant negative impact on the quality of segmentation of the nitrogen level in the agricultural field. The proposed method based on Attention R2U-Net (t2) and a combination of RGB, NearIR, and NDVI bands is stable for different types of agricultural landscapes and can help to improve crop nutrition and yield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌怜珊发布了新的文献求助10
刚刚
乐乐应助lydiaabc采纳,获得10
刚刚
科研通AI5应助曾绍炜采纳,获得10
刚刚
1秒前
123566完成签到,获得积分10
1秒前
ccl发布了新的文献求助10
1秒前
yuanyuan完成签到,获得积分10
1秒前
驴橘子窈完成签到,获得积分10
2秒前
lbh完成签到,获得积分10
2秒前
2秒前
工藤新一完成签到,获得积分10
2秒前
fangqian0000完成签到,获得积分10
2秒前
rrrrrr发布了新的文献求助20
3秒前
李雷完成签到 ,获得积分10
3秒前
3秒前
BenQiu完成签到,获得积分10
3秒前
4秒前
Ula完成签到,获得积分10
4秒前
fangqian0000发布了新的文献求助10
5秒前
JianYugen完成签到,获得积分0
6秒前
FashionBoy应助张张磊采纳,获得10
6秒前
罗rr发布了新的文献求助10
6秒前
7秒前
田様应助ccl采纳,获得10
7秒前
小易发布了新的文献求助10
7秒前
Akim应助汪马军采纳,获得10
7秒前
加勒比海带丝完成签到,获得积分10
8秒前
yue发布了新的文献求助10
8秒前
Allen发布了新的文献求助10
9秒前
wyu完成签到,获得积分10
9秒前
9秒前
Owen应助天津科技大学采纳,获得10
9秒前
深情安青应助怡然雁凡采纳,获得10
10秒前
10秒前
燕子关注了科研通微信公众号
11秒前
12秒前
研友_VZG7GZ应助Katherine采纳,获得20
12秒前
1234完成签到,获得积分10
12秒前
赘婿应助Max采纳,获得10
12秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789101
求助须知:如何正确求助?哪些是违规求助? 3334213
关于积分的说明 10267996
捐赠科研通 3050485
什么是DOI,文献DOI怎么找? 1674041
邀请新用户注册赠送积分活动 802435
科研通“疑难数据库(出版商)”最低求助积分说明 760607