Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface

脑-机接口 脑电图 节奏 计算机科学 事件相关电位 感觉运动节律 β节律 模式识别(心理学) 人工智能 心理学 语音识别 神经科学 哲学 美学
作者
Jiayuan Meng,Yingru Zhao,Kun Wang,Jin Sun,Weibo Yi,Fangzhou Xu,Minpeng Xu,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (6): 066004-066004
标识
DOI:10.1088/1741-2552/ad0650
摘要

Abstract Objective. Detecting movement intention is a typical use of brain–computer interfaces (BCI). However, as an endogenous electroencephalography (EEG) feature, the neural representation of movement is insufficient for improving motor-based BCI. This study aimed to develop a new movement augmentation BCI encoding paradigm by incorporating the cognitive function of rhythmic temporal prediction, and test the feasibility of this new paradigm in optimizing detections of movement intention. Methods. A visual-motion synchronization task was designed with two movement intentions (left vs. right) and three rhythmic temporal prediction conditions (1000 ms vs. 1500 ms vs. no temporal prediction). Behavioural and EEG data of 24 healthy participants were recorded. Event-related potentials (ERPs), event-related spectral perturbation induced by left- and right-finger movements, the common spatial pattern (CSP) and support vector machine, Riemann tangent space algorithm and logistic regression were used and compared across the three temporal prediction conditions, aiming to test the impact of temporal prediction on movement detection. Results. Behavioural results showed significantly smaller deviation time for 1000 ms and 1500 ms conditions. ERP analyses revealed 1000 ms and 1500 ms conditions led to rhythmic oscillations with a time lag in contralateral and ipsilateral areas of movement. Compared with no temporal prediction, 1000 ms condition exhibited greater beta event-related desynchronization (ERD) lateralization in motor area ( P < 0.001) and larger beta ERD in frontal area ( P < 0.001). 1000 ms condition achieved an averaged left–right decoding accuracy of 89.71% using CSP and 97.30% using Riemann tangent space, both significantly higher than no temporal prediction. Moreover, movement and temporal information can be decoded simultaneously, achieving 88.51% four-classification accuracy. Significance. The results not only confirm the effectiveness of rhythmic temporal prediction in enhancing detection ability of motor-based BCI, but also highlight the dual encodings of movement and temporal information within a single BCI paradigm, which is promising to expand the range of intentions that can be decoded by the BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
在水一方应助Dxc采纳,获得10
1秒前
1秒前
我爱看文献完成签到,获得积分10
1秒前
SXYYXS完成签到 ,获得积分10
2秒前
哈哈哈的一笑完成签到,获得积分10
2秒前
卡卡西应助cuen采纳,获得10
2秒前
木心儿吖完成签到 ,获得积分10
2秒前
3秒前
斯文败类应助谢谢李采纳,获得10
3秒前
3秒前
Amber发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
由凡发布了新的文献求助10
4秒前
SYLH应助洁净艳一采纳,获得80
4秒前
yyy完成签到,获得积分10
5秒前
5秒前
海边听海完成签到 ,获得积分0
5秒前
科研通AI5应助沉静龙猫采纳,获得10
5秒前
木心儿吖关注了科研通微信公众号
6秒前
6秒前
早日毕业完成签到,获得积分10
6秒前
drchen发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
Reyyyy完成签到,获得积分10
8秒前
8秒前
C2完成签到,获得积分20
8秒前
8秒前
万仁杰完成签到 ,获得积分10
8秒前
深情安青应助nian采纳,获得10
9秒前
熊熊爱完成签到,获得积分10
9秒前
REN关闭了REN文献求助
10秒前
kenny完成签到,获得积分20
10秒前
1111发布了新的文献求助20
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300