DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects

计算机科学 目标检测 特征(语言学) 人工智能 路径(计算) 对象(语法) 任务(项目管理) 推论 图层(电子) 模式识别(心理学) 数据挖掘 计算机视觉 工程类 哲学 语言学 化学 系统工程 有机化学 程序设计语言
作者
Yan Zhang,Haifeng Zhang,Qingqing Huang,Yan Han,Minghang Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122669-122669 被引量:70
标识
DOI:10.1016/j.eswa.2023.122669
摘要

Industrial defect detection is of great significance to ensure the quality of industrial products. The surface defects of industrial products are characterized by multiple scales, multiple types, abundant small objects, and complex background interference. In particular, small object detection of multiscale defects under complex background interference poses significant challenges for defect detection tasks. How to improve the algorithm's ability to detect industrial defects, especially in enhancing the detection capabilities of small-sized defects, while ensuring that the inference speed is not overly affected is a long-term prominent challenge. Aiming at achieving accurate and fast detection of industrial defects, this paper proposes an anchor-free network with DsPAN for small object detection. The core of this method is to propose a new idea i.e., feature enhancement in the feature fusion network for the feature information of small-size objects. Firstly, anchor-free YOLOv8 is adopted as the basic framework for detection to eliminate the affections of hyperparameters related to anchors, as well as to improve the detection capability of multi-scale and small-size defects. Secondly, considering the PAN path (top layer of neural networks for feature fusion) is more task-specific, we advocate that the underlying feature map of the PAN path is more vulnerable to small object detection. Hence, we in-depth study the PAN path and point out that the standard PAN will encounter several drawbacks caused by losing local details and position information in deep layer. As an alternative, we propose a lightweight and detail-sensitive PAN (DsPAN) for small object detection of multiscale defects by designing an attention mechanism embedded feature transformation module(LCBHAM) and optimizing the lightweight implementation. Our proposed DsPAN is very easy to be incorporated in YOLO series framework. The proposed method is evaluated on three public datasets, NEU-DET, PCB-DET, and GC10-DET. The mAP of the method is 80.4%, 95.8%, and 76.3%, which are 3.6%, 2.1%, and 3.9% higher than that of YOLOv8 and significantly higher than the state-of-the-art (SOTA) detection methods. Also, the method achieves the second-highest inference speed among the thirteen models tested. The results indicate that DsP-YOLO is expected to be used for real-time defect detection in industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun2发布了新的文献求助10
1秒前
mellow完成签到,获得积分10
2秒前
3秒前
外向的妍完成签到,获得积分10
5秒前
CodeCraft应助负责的妙松采纳,获得30
8秒前
李健的粉丝团团长应助1234采纳,获得30
9秒前
烟花应助sun2采纳,获得10
10秒前
英俊鼠标发布了新的文献求助10
10秒前
Jeff完成签到,获得积分10
10秒前
英俊的铭应助秋夜白采纳,获得10
12秒前
18秒前
20秒前
刻苦大门完成签到 ,获得积分10
22秒前
充电宝应助zhouleiwang采纳,获得10
23秒前
26秒前
26秒前
1234完成签到,获得积分10
26秒前
Owen应助世人千万再难遇我采纳,获得10
26秒前
茶蛋完成签到 ,获得积分10
26秒前
星辰大海应助非要起名采纳,获得10
27秒前
30秒前
hyt完成签到,获得积分20
30秒前
楼北完成签到,获得积分10
30秒前
白樱恋曲发布了新的文献求助10
30秒前
zxxx发布了新的文献求助10
34秒前
清脆的雁易关注了科研通微信公众号
36秒前
科研通AI5应助hyt采纳,获得10
37秒前
英俊的铭应助AlexanderChen采纳,获得10
38秒前
SciGPT应助zhouleiwang采纳,获得10
38秒前
catyew完成签到 ,获得积分10
38秒前
内向雪碧完成签到 ,获得积分10
39秒前
40秒前
41秒前
43秒前
zxxx发布了新的文献求助10
43秒前
风趣青槐完成签到,获得积分10
45秒前
45秒前
45秒前
1234发布了新的文献求助30
45秒前
AlexanderChen完成签到,获得积分20
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322741
关于积分的说明 10211312
捐赠科研通 3038069
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098