DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects

计算机科学 目标检测 特征(语言学) 人工智能 路径(计算) 对象(语法) 任务(项目管理) 推论 图层(电子) 模式识别(心理学) 数据挖掘 计算机视觉 工程类 哲学 有机化学 化学 程序设计语言 系统工程 语言学
作者
Yan Zhang,Haifeng Zhang,Qingqing Huang,Yan Han,Minghang Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:241: 122669-122669 被引量:213
标识
DOI:10.1016/j.eswa.2023.122669
摘要

Industrial defect detection is of great significance to ensure the quality of industrial products. The surface defects of industrial products are characterized by multiple scales, multiple types, abundant small objects, and complex background interference. In particular, small object detection of multiscale defects under complex background interference poses significant challenges for defect detection tasks. How to improve the algorithm's ability to detect industrial defects, especially in enhancing the detection capabilities of small-sized defects, while ensuring that the inference speed is not overly affected is a long-term prominent challenge. Aiming at achieving accurate and fast detection of industrial defects, this paper proposes an anchor-free network with DsPAN for small object detection. The core of this method is to propose a new idea i.e., feature enhancement in the feature fusion network for the feature information of small-size objects. Firstly, anchor-free YOLOv8 is adopted as the basic framework for detection to eliminate the affections of hyperparameters related to anchors, as well as to improve the detection capability of multi-scale and small-size defects. Secondly, considering the PAN path (top layer of neural networks for feature fusion) is more task-specific, we advocate that the underlying feature map of the PAN path is more vulnerable to small object detection. Hence, we in-depth study the PAN path and point out that the standard PAN will encounter several drawbacks caused by losing local details and position information in deep layer. As an alternative, we propose a lightweight and detail-sensitive PAN (DsPAN) for small object detection of multiscale defects by designing an attention mechanism embedded feature transformation module(LCBHAM) and optimizing the lightweight implementation. Our proposed DsPAN is very easy to be incorporated in YOLO series framework. The proposed method is evaluated on three public datasets, NEU-DET, PCB-DET, and GC10-DET. The mAP of the method is 80.4%, 95.8%, and 76.3%, which are 3.6%, 2.1%, and 3.9% higher than that of YOLOv8 and significantly higher than the state-of-the-art (SOTA) detection methods. Also, the method achieves the second-highest inference speed among the thirteen models tested. The results indicate that DsP-YOLO is expected to be used for real-time defect detection in industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
罗斯发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
碧蓝曼冬发布了新的文献求助10
2秒前
zhang完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
IyGnauH完成签到 ,获得积分10
6秒前
123发布了新的文献求助10
6秒前
7秒前
小蘑菇应助林二车娜姆采纳,获得10
7秒前
Josiah完成签到,获得积分10
8秒前
8秒前
yyyyy发布了新的文献求助10
8秒前
优雅涵雁完成签到,获得积分10
9秒前
10秒前
韩不二完成签到,获得积分10
10秒前
蛋蛋发布了新的文献求助10
11秒前
FlameHaze发布了新的文献求助10
11秒前
hiha完成签到,获得积分10
11秒前
青争唔完成签到,获得积分20
11秒前
研友_Z1xNWn发布了新的文献求助10
12秒前
古德赖可完成签到,获得积分20
13秒前
无花果应助Josiah采纳,获得30
13秒前
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
岐黄应助gzj采纳,获得10
17秒前
17秒前
lingzi1015完成签到,获得积分10
18秒前
古德赖可发布了新的文献求助10
19秒前
20秒前
WN发布了新的文献求助10
20秒前
Yogita完成签到,获得积分0
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749791
求助须知:如何正确求助?哪些是违规求助? 5460821
关于积分的说明 15364689
捐赠科研通 4889191
什么是DOI,文献DOI怎么找? 2628941
邀请新用户注册赠送积分活动 1577210
关于科研通互助平台的介绍 1533876