Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery

计算机科学 断层(地质) 透视图(图形) 领域(数学分析) 可靠性(半导体) 人工智能 学习迁移 数学 量子力学 物理 地质学 数学分析 功率(物理) 地震学
作者
Shengnan Tang,Jingtao Ma,Zhengqi Yan,Yong Zhu,Boo Cheong Khoo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108678-108678 被引量:42
标识
DOI:10.1016/j.engappai.2024.108678
摘要

Rotating machinery plays an essential part in many engineering fields. It needs prompt solutions to the prognosis and health management to ensure the system reliability. Facilitated by big data and artificial intelligence, intelligent fault diagnosis provides a new approach. As for the insufficient faulty data and complex conditions, deep transfer learning (DTL) presents a possible approach for cross-domain and cross-machine diagnosis. The published reviews thus far mainly emphasize on the analysis of fault diagnosis based on common classes of DTL or industrial application scenarios. This review concentrates on the applications of DTL in rotating machinery. Moreover, present relevant reviews were mainly till the end of 2021. The latest researches are analyzed from then until now. A special main line based on input types is chosen that distinguishes it from other reviews. From this perspective, it is therefore valuable to comprehensively investigate the fault diagnosis of rotating machinery. This survey firstly outlines the fundamental principle and conventional categories of DTL. The primary applications of DTL in fault diagnosis of rotating machinery are then summarized, and more than 100 relative studies have been analyzed. The special perspective of input types is selected and evaluated, including one-dimensional and two-dimensional, on the DTL framework as applied to the rotary machines discussed. Finally, the existing challenges are pointed out and potential future trends of DTL are prospected. This review helps readers to understand the research status and development trends of transfer intelligent fault diagnosis. It serves to the innovative exploration from multiple different scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯亦云应助lk1126采纳,获得10
2秒前
NexusExplorer应助东京芝士123采纳,获得10
3秒前
星辰大海应助读书的时候采纳,获得30
5秒前
打打应助Awalong采纳,获得10
7秒前
7秒前
合适的荆完成签到,获得积分10
10秒前
15秒前
16秒前
18秒前
19秒前
美好书瑶发布了新的文献求助10
20秒前
21秒前
汉堡包应助读书的时候采纳,获得30
21秒前
22秒前
小文给小文的求助进行了留言
23秒前
wz020620发布了新的文献求助10
25秒前
Biophilia发布了新的文献求助10
26秒前
26秒前
27秒前
美好书瑶完成签到,获得积分10
27秒前
28秒前
28秒前
Ava应助atmorz采纳,获得10
28秒前
科研小迷糊完成签到,获得积分10
28秒前
给刘宇宁的粉丝一篇文献吧完成签到,获得积分10
28秒前
lin发布了新的文献求助10
28秒前
30秒前
31秒前
33秒前
起风了完成签到 ,获得积分10
33秒前
35秒前
烧冻鸡翅发布了新的文献求助10
35秒前
XinYang完成签到,获得积分10
36秒前
wxy完成签到,获得积分10
36秒前
37秒前
乐医欧完成签到,获得积分20
38秒前
41秒前
安静大树完成签到,获得积分10
43秒前
541wwwwwssssy发布了新的文献求助10
43秒前
44秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044620
求助须知:如何正确求助?哪些是违规求助? 3582504
关于积分的说明 11386653
捐赠科研通 3309337
什么是DOI,文献DOI怎么找? 1821635
邀请新用户注册赠送积分活动 893842
科研通“疑难数据库(出版商)”最低求助积分说明 815875