Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery

计算机科学 断层(地质) 透视图(图形) 领域(数学分析) 可靠性(半导体) 人工智能 学习迁移 数学分析 功率(物理) 物理 数学 量子力学 地震学 地质学
作者
Shengnan Tang,Jingtao Ma,Zhengqi Yan,Yong Zhu,Boo Cheong Khoo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108678-108678 被引量:32
标识
DOI:10.1016/j.engappai.2024.108678
摘要

Rotating machinery plays an essential part in many engineering fields. It needs prompt solutions to the prognosis and health management to ensure the system reliability. Facilitated by big data and artificial intelligence, intelligent fault diagnosis provides a new approach. As for the insufficient faulty data and complex conditions, deep transfer learning (DTL) presents a possible approach for cross-domain and cross-machine diagnosis. The published reviews thus far mainly emphasize on the analysis of fault diagnosis based on common classes of DTL or industrial application scenarios. This review concentrates on the applications of DTL in rotating machinery. Moreover, present relevant reviews were mainly till the end of 2021. The latest researches are analyzed from then until now. A special main line based on input types is chosen that distinguishes it from other reviews. From this perspective, it is therefore valuable to comprehensively investigate the fault diagnosis of rotating machinery. This survey firstly outlines the fundamental principle and conventional categories of DTL. The primary applications of DTL in fault diagnosis of rotating machinery are then summarized, and more than 100 relative studies have been analyzed. The special perspective of input types is selected and evaluated, including one-dimensional and two-dimensional, on the DTL framework as applied to the rotary machines discussed. Finally, the existing challenges are pointed out and potential future trends of DTL are prospected. This review helps readers to understand the research status and development trends of transfer intelligent fault diagnosis. It serves to the innovative exploration from multiple different scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔法披风完成签到,获得积分10
刚刚
李琛完成签到,获得积分10
1秒前
大鱼完成签到 ,获得积分10
1秒前
Akim应助siriuslee99采纳,获得10
2秒前
2秒前
会撒娇的书白完成签到 ,获得积分10
2秒前
ding应助forg采纳,获得30
2秒前
无心的热狗完成签到,获得积分10
2秒前
revo完成签到,获得积分10
3秒前
卡沙巴完成签到,获得积分10
3秒前
3秒前
嘎嘎嘎发布了新的文献求助10
4秒前
lyp7028完成签到 ,获得积分10
5秒前
jenningseastera应助科研顺采纳,获得10
5秒前
科研通AI5应助dollar采纳,获得30
5秒前
5秒前
6秒前
一科研土豆完成签到,获得积分10
6秒前
路茄完成签到,获得积分20
6秒前
彩色的大碗完成签到,获得积分10
7秒前
olofmeister完成签到,获得积分10
7秒前
7秒前
木0521完成签到,获得积分20
7秒前
8秒前
FLZLC完成签到,获得积分10
8秒前
Vizz发布了新的文献求助10
8秒前
贪玩的千凡完成签到,获得积分10
8秒前
动点子智慧完成签到,获得积分10
8秒前
HL发布了新的文献求助10
8秒前
李健的粉丝团团长应助Xiao采纳,获得30
9秒前
keyaner完成签到,获得积分10
9秒前
崔雪峰发布了新的文献求助10
9秒前
游大达发布了新的文献求助10
9秒前
陈少华发布了新的文献求助10
9秒前
9秒前
丘比特应助lindahuang采纳,获得10
10秒前
Qyyy发布了新的文献求助10
10秒前
nihaoxiaoai完成签到,获得积分10
11秒前
zhang005on完成签到,获得积分10
11秒前
天雨流芳完成签到,获得积分20
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841029
求助须知:如何正确求助?哪些是违规求助? 3383027
关于积分的说明 10527774
捐赠科研通 3102849
什么是DOI,文献DOI怎么找? 1709070
邀请新用户注册赠送积分活动 822919
科研通“疑难数据库(出版商)”最低求助积分说明 773694