PCNet: Prior Category Network for CT Universal Segmentation Model

分割 计算机科学 人工智能 图像分割 计算机视觉
作者
Yixin Chen,Yajuan Gao,Lei Zhu,Wenrui Shao,Yanye Lu,Hongbin Han,Zhaoheng Xie
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3319-3330
标识
DOI:10.1109/tmi.2024.3395349
摘要

Accurate segmentation of anatomical structures in Computed Tomography (CT) images is crucial for clinical diagnosis, treatment planning, and disease monitoring. The present deep learning segmentation methods are hindered by factors such as data scale and model size. Inspired by how doctors identify tissues, we propose a novel approach, the Prior Category Network (PCNet), that boosts segmentation performance by leveraging prior knowledge between different categories of anatomical structures. Our PCNet comprises three key components: prior category prompt (PCP), hierarchy category system (HCS), and hierarchy category loss (HCL). PCP utilizes Contrastive Language-Image Pretraining (CLIP), along with attention modules, to systematically define the relationships between anatomical categories as identified by clinicians. HCS guides the segmentation model in distinguishing between specific organs, anatomical structures, and functional systems through hierarchical relationships. HCL serves as a consistency constraint, fortifying the directional guidance provided by HCS to enhance the segmentation model's accuracy and robustness. We conducted extensive experiments to validate the effectiveness of our approach, and the results indicate that PCNet can generate a high-performance, universal model for CT segmentation. The PCNet framework also demonstrates a significant transferability on multiple downstream tasks. The ablation experiments show that the methodology employed in constructing the HCS is of critical importance. The prompt and HCS can be accessed at https://github.com/PKU-MIPET/PCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由怜雪完成签到,获得积分10
刚刚
1秒前
yanglin完成签到,获得积分10
1秒前
星辰大海应助pauchiu采纳,获得10
2秒前
3秒前
3秒前
654完成签到,获得积分10
4秒前
4秒前
TUTU完成签到 ,获得积分10
4秒前
April完成签到,获得积分10
4秒前
5秒前
6秒前
happyAlice应助汪汪采纳,获得20
6秒前
6秒前
卡卡西应助不羁的红枫叶采纳,获得30
7秒前
8秒前
充电宝应助地表飞猪采纳,获得10
8秒前
Jackson发布了新的文献求助10
8秒前
mengkezhang完成签到,获得积分10
9秒前
勤奋雨完成签到,获得积分10
10秒前
炫酷火锅完成签到,获得积分10
10秒前
余烬发布了新的文献求助10
10秒前
虚幻芷文发布了新的文献求助10
10秒前
10秒前
MiaoRui发布了新的文献求助10
11秒前
zwy完成签到,获得积分10
11秒前
含蓄的荔枝应助企鹅采纳,获得10
14秒前
泡沫没有冰完成签到,获得积分10
15秒前
15秒前
JamesPei应助搬石头采纳,获得10
15秒前
15秒前
16秒前
在水一方应助季春九采纳,获得30
16秒前
lemon发布了新的文献求助10
17秒前
小二郎应助cc小木屋采纳,获得10
18秒前
wanci应助falcon采纳,获得30
18秒前
小满发布了新的文献求助10
19秒前
寇旭晗发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819142
求助须知:如何正确求助?哪些是违规求助? 3362242
关于积分的说明 10416115
捐赠科研通 3080466
什么是DOI,文献DOI怎么找? 1694492
邀请新用户注册赠送积分活动 814668
科研通“疑难数据库(出版商)”最低求助积分说明 768388