PCNet: Prior Category Network for CT Universal Segmentation Model

分割 计算机科学 人工智能 图像分割 计算机视觉
作者
Yixin Chen,Yajuan Gao,Lei Zhu,Wenrui Shao,Yanye Lu,Hongbin Han,Zhaoheng Xie
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3319-3330 被引量:2
标识
DOI:10.1109/tmi.2024.3395349
摘要

Accurate segmentation of anatomical structures in Computed Tomography (CT) images is crucial for clinical diagnosis, treatment planning, and disease monitoring. The present deep learning segmentation methods are hindered by factors such as data scale and model size. Inspired by how doctors identify tissues, we propose a novel approach, the Prior Category Network (PCNet), that boosts segmentation performance by leveraging prior knowledge between different categories of anatomical structures. Our PCNet comprises three key components: prior category prompt (PCP), hierarchy category system (HCS), and hierarchy category loss (HCL). PCP utilizes Contrastive Language-Image Pretraining (CLIP), along with attention modules, to systematically define the relationships between anatomical categories as identified by clinicians. HCS guides the segmentation model in distinguishing between specific organs, anatomical structures, and functional systems through hierarchical relationships. HCL serves as a consistency constraint, fortifying the directional guidance provided by HCS to enhance the segmentation model's accuracy and robustness. We conducted extensive experiments to validate the effectiveness of our approach, and the results indicate that PCNet can generate a high-performance, universal model for CT segmentation. The PCNet framework also demonstrates a significant transferability on multiple downstream tasks. The ablation experiments show that the methodology employed in constructing the HCS is of critical importance. The prompt and HCS can be accessed at https://github.com/PKU-MIPET/PCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曲初雪发布了新的文献求助10
1秒前
托尔斯泰完成签到,获得积分10
2秒前
2秒前
灯光师发布了新的文献求助10
3秒前
4秒前
5秒前
励志小薛完成签到,获得积分10
5秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
研友_VZG7GZ应助超级的抽屉采纳,获得30
9秒前
愿抒完成签到 ,获得积分10
9秒前
9秒前
天天快乐应助wangziwen采纳,获得10
9秒前
顾矜应助小心采纳,获得10
10秒前
dawd发布了新的文献求助10
10秒前
内向的凝芙完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI5应助chenjun7080采纳,获得10
13秒前
13秒前
Diss发布了新的文献求助10
13秒前
曾经的姒发布了新的文献求助30
13秒前
英俊的铭应助笑点低紊采纳,获得10
14秒前
14秒前
16秒前
16秒前
fireking_sid发布了新的文献求助50
17秒前
华仔应助wxr采纳,获得10
17秒前
18秒前
笨笨凡波完成签到 ,获得积分10
18秒前
GreenV完成签到,获得积分10
18秒前
斯文乘云关注了科研通微信公众号
18秒前
663发布了新的文献求助50
18秒前
Diss完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4289769
求助须知:如何正确求助?哪些是违规求助? 3816785
关于积分的说明 11953122
捐赠科研通 3460901
什么是DOI,文献DOI怎么找? 1898293
邀请新用户注册赠送积分活动 946764
科研通“疑难数据库(出版商)”最低求助积分说明 849881