A Comprehensive Survey on Self-Supervised Learning for Recommendation

计算机科学 人工智能 机器学习 数据科学 情报检索
作者
Xubin Ren,Wei Wei,Lianghao Xia,Chao Huang
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:58 (1): 1-38 被引量:6
标识
DOI:10.1145/3746280
摘要

Recommender systems play a crucial role in tackling the challenge of information overload by delivering personalized recommendations based on individual user preferences. Deep learning techniques, such as RNNs, GNNs, and Transformer architectures, have significantly propelled the advancement of recommender systems by enhancing their comprehension of user behaviors and preferences. However, supervised learning methods encounter challenges in real-life scenarios due to data sparsity, resulting in limitations in their ability to learn representations effectively. To address this, self-supervised learning (SSL) techniques have emerged as a solution, leveraging inherent data structures to generate supervision signals without relying solely on labeled data. By leveraging unlabeled data and extracting meaningful representations, recommender systems utilizing SSL can make accurate predictions and recommendations even when confronted with data sparsity. In this article, we provide a comprehensive review of self-supervised learning frameworks designed for recommender systems, encompassing a thorough analysis of over 170 papers. We conduct an exploration of nine distinct scenarios, enabling a comprehensive understanding of SSL-enhanced recommenders in different contexts. For each domain, we elaborate on different self-supervised learning paradigms, namely contrastive learning, generative learning, and adversarial learning, so as to present technical details of how SSL enhances recommender systems in various contexts. We consistently maintain the related open-source materials at https://github.com/HKUDS/Awesome-SSLRec-Papers .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
1秒前
3秒前
Celeste应助tianfx3采纳,获得10
3秒前
3秒前
晨曦完成签到,获得积分10
3秒前
3秒前
怕孤独的鸵鸟完成签到,获得积分10
3秒前
迷路冥茗发布了新的文献求助10
4秒前
打打应助QiongBai520采纳,获得10
4秒前
5秒前
欣喜的薯片完成签到 ,获得积分10
5秒前
科研通AI6应助tooty采纳,获得10
6秒前
6秒前
123完成签到 ,获得积分10
7秒前
感动城发布了新的文献求助10
7秒前
爆米花应助www采纳,获得10
7秒前
Wang1991完成签到,获得积分10
8秒前
9秒前
柳易槐发布了新的文献求助10
10秒前
12秒前
7ouo发布了新的文献求助10
13秒前
spenley完成签到,获得积分0
13秒前
14秒前
14秒前
科研通AI6应助谢建平采纳,获得30
14秒前
14秒前
yu完成签到,获得积分10
14秒前
打打应助积极的觅荷采纳,获得10
14秒前
15秒前
混元灵通发布了新的文献求助10
16秒前
16秒前
yznfly应助欢喜平凡采纳,获得30
17秒前
领导范儿应助银杏叶呀采纳,获得10
17秒前
17秒前
哲别发布了新的文献求助10
17秒前
Function完成签到,获得积分10
17秒前
飞羽完成签到,获得积分10
18秒前
单身的乐瑶完成签到,获得积分10
19秒前
21秒前
22秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388971
求助须知:如何正确求助?哪些是违规求助? 4511331
关于积分的说明 14038247
捐赠科研通 4422151
什么是DOI,文献DOI怎么找? 2429081
邀请新用户注册赠送积分活动 1421628
关于科研通互助平台的介绍 1400767