Support Vector Machines: Unveiling the Power and Versatility of SVMs in Modern Machine Learning

支持向量机 计算机科学 机器学习 人工智能 功率(物理) 量子力学 物理
作者
K Saravanan,R.Banu Prakash,C. Balakrishnan,Gade Venkata Prasanna Kumar,R. Sıva Subramanıan,M. Anita
标识
DOI:10.1109/icimia60377.2023.10426542
摘要

Support vector machines, or SVMs, have become a really big deal in machine learning because of how good they are at classification and regression problems. This article explores in-depth knowledge about SVMs in ML algorithms. First from the history of SVMs, starting with when they were first thought up and addresses some important stuff different researchers have done with them over time. Next, get into the math and theory behind how SVMs work things like margins support vectors, and optimization problems and also discuss different ways SVMs have been tweaked and changed, like versions for multiple classes, support vector regression one-class SVMs, and twin SVMs. Another key part of SVMs is kernel functions here we spend a bunch of time breaking those down and explaining what they do to transform data so SVMs can work with it better. Further on, we look at some real-world uses for SVMs, like in image recognition natural language processing, bioinformatics, and finance. Even though SVMs have been around for a while they're still super relevant today, so here summarize the most important discoveries about them and think about ways SVMs might keep evolving or being used differently as machine learning keeps moving fast. Overall, the goal here is to give you a deep dive into Support Vector Machines - where they began, the technical details, how they are applied, and where they might go in the future helpful in better understanding the SVM in ML Algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YXYYXYYXY完成签到,获得积分10
刚刚
pride完成签到,获得积分10
1秒前
饱满的大碗完成签到 ,获得积分10
2秒前
linaoctcn发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
彭于晏应助aliu采纳,获得10
7秒前
SQ完成签到 ,获得积分10
9秒前
9秒前
夜无疆发布了新的文献求助10
11秒前
南瓜头完成签到 ,获得积分10
11秒前
柚子完成签到,获得积分10
12秒前
友好聋五完成签到,获得积分10
13秒前
北海西贝完成签到,获得积分10
14秒前
14秒前
hy关注了科研通微信公众号
14秒前
SQ关注了科研通微信公众号
15秒前
朴实初夏完成签到 ,获得积分10
16秒前
17秒前
w020507完成签到,获得积分10
17秒前
17秒前
清晨牛完成签到,获得积分10
18秒前
小心台阶发布了新的文献求助80
18秒前
浮游应助顏泰楊采纳,获得10
18秒前
研友_8QyXr8完成签到,获得积分10
18秒前
摸鱼大王完成签到 ,获得积分10
19秒前
汉堡包应助鱼糕采纳,获得10
19秒前
MAKEYF完成签到 ,获得积分10
20秒前
尊敬的雁桃完成签到 ,获得积分10
20秒前
百招发布了新的文献求助10
21秒前
21秒前
aliu发布了新的文献求助10
21秒前
小禾完成签到 ,获得积分10
22秒前
眉书初完成签到 ,获得积分10
22秒前
FashionBoy应助ymk采纳,获得30
24秒前
24秒前
goldNAN完成签到,获得积分10
24秒前
NexusExplorer应助XIXIXI采纳,获得10
24秒前
量子星尘发布了新的文献求助50
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059540
求助须知:如何正确求助?哪些是违规求助? 4284185
关于积分的说明 13350795
捐赠科研通 4101653
什么是DOI,文献DOI怎么找? 2245721
邀请新用户注册赠送积分活动 1251490
关于科研通互助平台的介绍 1182149