Joint pricing and inventory management under minimax regret

后悔 接头(建筑物) 收益管理 库存管理 极小极大 动态定价 业务 经济 运营管理 计算机科学 运筹学 数学 微观经济学 财务 收入 机器学习 工程类 建筑工程
作者
Chengzhang Li,Mengshi Lu
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (8): 2529-2545 被引量:10
标识
DOI:10.1111/poms.13991
摘要

We study the problem of jointly optimizing the price and order quantity for a perishable product in a single selling period, also known as the pricing newsvendor problem, under demand ambiguity. Specifically, the demand is a function of the selling price and a random factor of which the distribution is unknown. We employ the minimax regret decision criterion to minimize the worst‐case regret, where the regret is defined as the difference between the optimal profit that could be obtained with perfect/complete information and the realized profit using the decision made with ambiguous demand information. First, given the interval in which the random factor lies with high probability, we characterize the optimal pricing and ordering decisions under the minimax regret criterion and compare their properties with those in the classical models that seek to maximize the expected profit. Specifically, we explore the impact of inventory risk by comparing the optimal price and the risk‐free price and study comparative statics with respect to the degree of demand ambiguity and the unit ordering cost. We further show that the minimax regret approach avoids the high degree of conservativeness that is often incurred in the application of the commonly used max–min robust optimization approach. Second, when partial distributional information of the random factor is available, we adopt the Wasserstein distance to depict the distributional ambiguity and characterize the set of worst‐case distributions and the maximum regret given the selling price and order quantity. Third, we compare the minimax regret approaches with the traditional profit‐maximization approach in a data‐driven setting. We show via a numerical study that the minimax regret approaches outperform the traditional profit‐maximization approach, especially when the data are scarce, the demand has high volatility, and the number of exercised prices is small. Furthermore, leveraging the partial distributional information of the random factor can further improve the performance of the minimax regret approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助jimoon采纳,获得10
刚刚
刚刚
郭晋安完成签到 ,获得积分10
1秒前
饮马长城窟完成签到 ,获得积分10
2秒前
3秒前
曾经小伙发布了新的文献求助10
3秒前
hgy应助不知终日梦为鱼采纳,获得10
4秒前
4秒前
immoral完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
轨迹发布了新的文献求助10
5秒前
6秒前
Ting完成签到 ,获得积分10
7秒前
8秒前
拾三发布了新的文献求助20
8秒前
8秒前
科研通AI5应助papers采纳,获得10
9秒前
逢考必过发布了新的文献求助10
9秒前
suxing发布了新的文献求助10
9秒前
9秒前
jimoon发布了新的文献求助10
9秒前
星辰大海应助虚幻天空采纳,获得10
9秒前
11秒前
平淡鹰完成签到,获得积分20
12秒前
14秒前
逍遥鸭发布了新的文献求助10
14秒前
FashionBoy应助wxy采纳,获得10
14秒前
小于发布了新的文献求助10
15秒前
jimoon完成签到,获得积分10
15秒前
17秒前
18秒前
18秒前
学习吧xy完成签到,获得积分10
18秒前
19秒前
小可爱发布了新的文献求助30
19秒前
wg应助非凡梦采纳,获得100
19秒前
魁梧的诗柳应助轨迹采纳,获得10
20秒前
Orange应助轨迹采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4440217
求助须知:如何正确求助?哪些是违规求助? 3912303
关于积分的说明 12150631
捐赠科研通 3559640
什么是DOI,文献DOI怎么找? 1953977
邀请新用户注册赠送积分活动 993682
科研通“疑难数据库(出版商)”最低求助积分说明 889110