亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm

卷积神经网络 人工神经网络 人工智能 雨水收集 计算机科学 浊度 排水 噪音(视频) 环境科学 算法 海洋学 图像(数学) 生态学 生物 地质学
作者
Qiyun Zhu,April Z. Gu,Dan Li,Tianmu Zhang,Lunhong Xiang,Miao He
出处
期刊:Frontiers of Environmental Science & Engineering [Higher Education Press]
卷期号:15 (6) 被引量:22
标识
DOI:10.1007/s11783-021-1430-6
摘要

Optimizing sewage collection is important for water pollution control and wastewater treatment plants quality and efficiency improvement. Currently, the urban drainage pipeline network is upgrading to improve its classification and collection ability. However, there is a lack of efficient online monitoring and identification technology. UV-visible absorption spectrum probe is considered as a potential monitoring method due to its small size, reagent-free and fast detection. Because the performance parameters of probe like optic resolution, dynamic interval and signal-to-noise ratio are weak and high turbidity of sewage raises the noise level, it is necessary to extract shape features from the turbidity disturbed drainage spectrum for classification purposes. In this study, drainage network samples were online collected and tested, and four types were labeled according to sample sites and environment situation. Derivative spectrum were adopted to amplify the shape features, while convolutional neural network algorithm was established to conduct nonlinear spectrum classification. Influence of input and network structure on classification accuracy was compared. Original spectrum, first-order derivative spectrum and a combination of both were set to be three different inputs. Artificial neural network with or without convolutional layer were set be two different network structures. The results revealed a convolutional neural network combined with inputs of first and zero-order derivatives was proposed to have the best classification effect on domestic sewage, mixed rainwater, rainwater and industrial sewage. The recognition rate of industrial wastewater was 100%, and the recognition rate of domestic sewage and rainwater mixing system were over 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
小小怪发布了新的文献求助10
5秒前
kakainho发布了新的文献求助10
8秒前
21秒前
23秒前
zzzxh发布了新的文献求助10
28秒前
33秒前
科研通AI2S应助奋斗广缘采纳,获得10
34秒前
科研Mayormm完成签到 ,获得积分0
37秒前
我是老大应助zzzxh采纳,获得10
37秒前
夏天无完成签到,获得积分20
42秒前
大个应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
典雅问寒应助科研通管家采纳,获得10
43秒前
Panther完成签到,获得积分10
44秒前
46秒前
过氧化氢完成签到,获得积分20
48秒前
53秒前
嘉心糖完成签到,获得积分0
54秒前
梦璃完成签到 ,获得积分10
55秒前
55秒前
58秒前
1分钟前
zzzxh发布了新的文献求助10
1分钟前
卡皮巴拉完成签到,获得积分10
1分钟前
充电宝应助zzzxh采纳,获得10
1分钟前
1分钟前
1分钟前
壮观的谷冬完成签到 ,获得积分10
1分钟前
机灵自中发布了新的文献求助30
1分钟前
SciGPT应助朴实的成风采纳,获得30
1分钟前
大模型应助tay采纳,获得10
1分钟前
阔达的非笑完成签到 ,获得积分10
1分钟前
机灵自中完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
淡定从霜完成签到 ,获得积分10
1分钟前
tay发布了新的文献求助10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540498
捐赠科研通 3106019
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264