An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication

人工智能 计算机科学 健康档案 队列 机器学习 数据科学 医学 医疗保健 病理 经济 经济增长
作者
Olivier Morin,Martin Vallières,Steve Braunstein,Jorge Barrios Ginart,Taman Upadhaya,Henry C. Woodruff,Alex Zwanenburg,Avishek Chatterjee,Javier Villanueva-Meyer,Gilmer Valdés,William Chen,Julian C. Hong,Sue S. Yom,Timothy D. Solberg,Steffen Löck,Jan Seuntjens,Catherine Park,Philippe Lambin
出处
期刊:Nature cancer [Nature Portfolio]
卷期号:2 (7): 709-722 被引量:78
标识
DOI:10.1038/s43018-021-00236-2
摘要

Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual’s disease course unfolds. Morin and colleagues develop a data-integration framework capable of performing continuous learning from electronic health records on clinical, social and demographic data collected over a decade to estimate pan-cancer survival prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ancy应助楠楠小猪采纳,获得10
3秒前
sctaaa完成签到,获得积分10
3秒前
深情安青应助BZPL采纳,获得10
5秒前
5秒前
能干忆霜完成签到,获得积分10
6秒前
夏木子发布了新的文献求助100
6秒前
6秒前
逆流的鱼完成签到,获得积分10
8秒前
9秒前
奶油桃子发布了新的文献求助30
9秒前
9秒前
9秒前
9秒前
Loki应助lhc采纳,获得10
10秒前
深藏blue完成签到,获得积分10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
穆仰应助科研通管家采纳,获得10
11秒前
穆仰应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
哈里发发布了新的文献求助10
12秒前
13秒前
14秒前
阿宋发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
科目三应助Java采纳,获得10
15秒前
16秒前
16秒前
Orange应助乐观的访旋采纳,获得10
17秒前
上官若男应助读书的时候采纳,获得10
17秒前
18秒前
丘比特应助万灵竹采纳,获得10
18秒前
jiangzhiyun发布了新的文献求助10
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097455
求助须知:如何正确求助?哪些是违规求助? 3635099
关于积分的说明 11522496
捐赠科研通 3345365
什么是DOI,文献DOI怎么找? 1838640
邀请新用户注册赠送积分活动 906182
科研通“疑难数据库(出版商)”最低求助积分说明 823492