清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Charting, Navigating, and Populating Natural Product Chemical Space for Drug Discovery

化学空间 化学信息学 药物发现 化学 天然产物 空格(标点符号) 数据科学 计算机科学 化学 生化工程 计算生物学 纳米技术 有机化学 工程类 计算化学 材料科学 操作系统 生物 生物化学
作者
Hugo Lachance,Stefan Wetzel,Kamal Kumar,Herbert Waldmann
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:55 (13): 5989-6001 被引量:309
标识
DOI:10.1021/jm300288g
摘要

Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢呼亦绿完成签到,获得积分10
2秒前
4秒前
量子星尘发布了新的文献求助10
19秒前
Jessica应助精明代灵采纳,获得10
23秒前
大个应助安静的小蘑菇采纳,获得30
23秒前
上官若男应助巫马百招采纳,获得10
25秒前
量子星尘发布了新的文献求助10
39秒前
47秒前
紫熊发布了新的文献求助10
52秒前
巫马百招发布了新的文献求助10
52秒前
巫马百招完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
紫熊完成签到,获得积分10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
3分钟前
锦城纯契完成签到 ,获得积分10
3分钟前
常有李完成签到,获得积分10
5分钟前
Azure完成签到 ,获得积分10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
carolsoongmm完成签到,获得积分10
6分钟前
hu完成签到,获得积分20
6分钟前
6分钟前
精明代灵完成签到,获得积分10
6分钟前
精明代灵发布了新的文献求助10
6分钟前
hu发布了新的文献求助10
7分钟前
7分钟前
gwbk完成签到,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
kklkimo完成签到,获得积分10
7分钟前
慕青应助erjfuhe采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538