Understanding of a convolutional neural network

卷积神经网络 计算机科学 人工智能 深度学习 联营 人工神经网络 卷积(计算机科学) 图层(电子) 机器学习 模式识别(心理学) 上下文图像分类 集合(抽象数据类型) 图像(数学) 有机化学 化学 程序设计语言
作者
Saad Albawi,Tareq Abed Mohammed,Saad Al-Azawi
标识
DOI:10.1109/icengtechnol.2017.8308186
摘要

The term Deep Learning or Deep Neural Network refers to Artificial Neural Networks (ANN) with multi layers. Over the last few decades, it has been considered to be one of the most powerful tools, and has become very popular in the literature as it is able to handle a huge amount of data. The interest in having deeper hidden layers has recently begun to surpass classical methods performance in different fields; especially in pattern recognition. One of the most popular deep neural networks is the Convolutional Neural Network (CNN). It take this name from mathematical linear operation between matrixes called convolution. CNN have multiple layers; including convolutional layer, non-linearity layer, pooling layer and fully-connected layer. The convolutional and fully-connected layers have parameters but pooling and non-linearity layers don't have parameters. The CNN has an excellent performance in machine learning problems. Specially the applications that deal with image data, such as largest image classification data set (Image Net), computer vision, and in natural language processing (NLP) and the results achieved were very amazing. In this paper we will explain and define all the elements and important issues related to CNN, and how these elements work. In addition, we will also state the parameters that effect CNN efficiency. This paper assumes that the readers have adequate knowledge about both machine learning and artificial neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理问柳完成签到,获得积分10
刚刚
清脆的秋柔完成签到,获得积分10
1秒前
雨柏完成签到 ,获得积分10
1秒前
1秒前
张倩完成签到,获得积分10
1秒前
快乐滑板发布了新的文献求助10
1秒前
科研通AI5应助高翎溪采纳,获得10
1秒前
加湿器应助Croissant采纳,获得30
2秒前
2秒前
GinFF发布了新的文献求助10
3秒前
失眠夏山发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI5应助yanxiaoting采纳,获得50
5秒前
英姑应助zzx采纳,获得10
5秒前
小屋完成签到,获得积分10
7秒前
ding发布了新的文献求助10
7秒前
北北完成签到,获得积分20
8秒前
步步发布了新的文献求助20
8秒前
平常映雁完成签到,获得积分10
8秒前
9秒前
9秒前
烟花应助coco采纳,获得10
9秒前
hjyylab应助dd采纳,获得10
9秒前
是滴是滴发布了新的文献求助10
9秒前
Orange应助稳重道消采纳,获得10
10秒前
万能图书馆应助Tao采纳,获得10
10秒前
10秒前
yyh完成签到,获得积分20
10秒前
高乐高发布了新的文献求助10
11秒前
12秒前
12秒前
斯文芷荷完成签到,获得积分20
12秒前
爆米花应助jiangtao采纳,获得10
12秒前
聪明语芹发布了新的文献求助10
13秒前
大饼卷肉发布了新的文献求助10
14秒前
明明完成签到,获得积分10
14秒前
14秒前
慕青应助芜湖采纳,获得10
15秒前
华仔应助落后晓蓝采纳,获得10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383379
关于积分的说明 10529293
捐赠科研通 3103468
什么是DOI,文献DOI怎么找? 1709269
邀请新用户注册赠送积分活动 823044
科研通“疑难数据库(出版商)”最低求助积分说明 773769