Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology

药理学 肉碱 代谢物 化学 脂类学 代谢组学 作用机理 鞘脂 脂质代谢 生物化学 生物 色谱法 体外
作者
Aiping Li,Yang Liu,Ting Cui,Lichao Zhang,Yuetao Liu,Yan Yan,Ke Li,Xuemei Qin
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:77: 153274-153274 被引量:34
标识
DOI:10.1016/j.phymed.2020.153274
摘要

Astragali Radix (AR), a common Traditional Chinese Medicine (TCM), is commonly used for treating nephrotic syndrome (NS) in China. At present, the research on the efficacy of AR against NS is relative clearly, but there are fewer researches on the mechanism. The aim of this study was to evaluate the potential beneficial effects of AR in an adriamycin-induced nephropathy rat model, as well as investigate the possible mechanisms of action and potential lipid biomarkers. In this work, a rat model of NS was established by two injections of ADR (3.5 + 1 mg/kg) into the tail vein. The potential metabolites and targets involved in the anti-NS effects of AR were predicted by lipidomics coupled with the network pharmacology approach, and the crucial metabolite and protein were further validated by western blotting and ELISA. The results showed that 22 metabolites such as l-carnitine, LysoPC (20:3), and SM (d18:1/16:0) were associated with renal injury. Moreover, SMPD1, CPT1A and LCAT were predicted as lipids linked targets of AR against NS, whilst glycerophospholipid, sphingolipid and fatty acids metabolism were involved as key pathways of AR against NS. Besides, AR could play a critical role in NS by improving oxidative stress, inhibiting apoptosis and reducing inflammation. Interestingly, our results indicated that key metabolite l-carnitine and target CPT1 were one of the important metabolites and targets for AR to exert anti-NS effects. In summary, this study offered a new understanding of the protection mechanism of AR against NS by network pharmacology and lipidomic method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
菠萝吹雪发布了新的文献求助10
2秒前
2秒前
new完成签到,获得积分10
3秒前
Distance发布了新的文献求助10
3秒前
求知的土拨鼠完成签到,获得积分10
3秒前
无花果应助小时候可淘了采纳,获得10
4秒前
ha完成签到,获得积分20
4秒前
7秒前
8秒前
9秒前
Weiyu发布了新的文献求助10
10秒前
11秒前
11秒前
orixero应助waerteyang采纳,获得10
12秒前
14秒前
14秒前
隐形曼青应助xqq采纳,获得10
14秒前
alading发布了新的文献求助10
14秒前
苏栀应助诚心的老六采纳,获得10
14秒前
今天只做一件事应助CXH采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
顺心凡之发布了新的文献求助10
18秒前
欧阳铭发布了新的文献求助10
21秒前
21秒前
汉堡包应助William_l_c采纳,获得10
22秒前
22秒前
23秒前
万能图书馆应助QSJ采纳,获得10
23秒前
完美世界应助科研兄采纳,获得10
25秒前
SYLH应助hui采纳,获得10
25秒前
6633发布了新的文献求助10
26秒前
忧伤的初露完成签到,获得积分10
26秒前
CC发布了新的文献求助10
27秒前
27秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975