已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation

计算机科学 特征(语言学) 分割 保险丝(电气) 联营 人工智能 块(置换群论) 解码方法 模式识别(心理学) 计算机视觉 编码器 算法 工程类 哲学 电气工程 操作系统 语言学 数学 几何学
作者
Chengli Peng,Tian Tian,Chen Chen,Xiaojie Guo,Jiayi Ma
出处
期刊:Neural Networks [Elsevier BV]
卷期号:137: 188-199 被引量:57
标识
DOI:10.1016/j.neunet.2021.01.021
摘要

The encoder–decoder structure has been introduced into semantic segmentation to improve the spatial accuracy of the network by fusing high- and low-level feature maps. However, recent state-of-the-art encoder–decoder-based methods can hardly attain the real-time requirement due to their complex and inefficient decoders. To address this issue, in this paper, we propose a lightweight bilateral attention decoder for real-time semantic segmentation. It consists of two blocks and can fuse different level feature maps via two steps, i.e., information refinement and information fusion. In the first step, we propose a channel attention branch to refine the high-level feature maps and a spatial attention branch for the low-level ones. The refined high-level feature maps can capture more exact semantic information and the refined low-level ones can capture more accurate spatial information, which significantly improves the information capturing ability of these feature maps. In the second step, we develop a new fusion module named pooling fusing block to fuse the refined high- and low-level feature maps. This fusion block can take full advantages of the high- and low-level feature maps, leading to high-quality fusion results. To verify the efficiency of the proposed bilateral attention decoder, we adopt a lightweight network as the backbone and compare our proposed method with other state-of-the-art real-time semantic segmentation methods on the Cityscapes and Camvid datasets. Experimental results demonstrate that our proposed method can achieve better performance with a higher inference speed. Moreover, we compare our proposed network with several state-of-the-art non-real-time semantic segmentation methods and find that our proposed network can also attain better segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
Duan完成签到 ,获得积分10
9秒前
蚂蚁牙黑发布了新的文献求助10
11秒前
长命百岁完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
14秒前
蚂蚁牙黑完成签到,获得积分10
20秒前
野原新之助完成签到 ,获得积分10
22秒前
vampire完成签到 ,获得积分10
24秒前
27秒前
小二郎应助小宋爱睡觉采纳,获得10
31秒前
香蕉觅云应助HorseM采纳,获得10
34秒前
elegant完成签到,获得积分10
44秒前
兴奋的发卡完成签到 ,获得积分10
49秒前
传奇3应助zoe采纳,获得30
55秒前
典雅葶完成签到 ,获得积分10
56秒前
1分钟前
orixero应助开朗小兔子采纳,获得10
1分钟前
JamesPei应助elegant采纳,获得10
1分钟前
Byron完成签到,获得积分10
1分钟前
1分钟前
1分钟前
无花果应助研友_Z6Qrbn采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
KanmenRider完成签到,获得积分10
1分钟前
zoe发布了新的文献求助30
1分钟前
嘻嘻发布了新的文献求助10
1分钟前
HorseM发布了新的文献求助10
1分钟前
oysl发布了新的文献求助10
1分钟前
yyj完成签到,获得积分10
1分钟前
Cosmosurfer完成签到,获得积分10
1分钟前
上官若男应助Bingbingbing采纳,获得10
1分钟前
开朗小兔子完成签到,获得积分10
1分钟前
红毛兔完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922005
求助须知:如何正确求助?哪些是违规求助? 3466799
关于积分的说明 10945061
捐赠科研通 3195660
什么是DOI,文献DOI怎么找? 1765776
邀请新用户注册赠送积分活动 855738
科研通“疑难数据库(出版商)”最低求助积分说明 795069