亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation

计算机科学 特征(语言学) 分割 保险丝(电气) 联营 人工智能 块(置换群论) 解码方法 模式识别(心理学) 计算机视觉 编码器 算法 工程类 哲学 电气工程 操作系统 语言学 数学 几何学
作者
Chengli Peng,Tian Tian,Chen Chen,Xiaojie Guo,Jiayi Ma
出处
期刊:Neural Networks [Elsevier]
卷期号:137: 188-199 被引量:86
标识
DOI:10.1016/j.neunet.2021.01.021
摘要

The encoder–decoder structure has been introduced into semantic segmentation to improve the spatial accuracy of the network by fusing high- and low-level feature maps. However, recent state-of-the-art encoder–decoder-based methods can hardly attain the real-time requirement due to their complex and inefficient decoders. To address this issue, in this paper, we propose a lightweight bilateral attention decoder for real-time semantic segmentation. It consists of two blocks and can fuse different level feature maps via two steps, i.e., information refinement and information fusion. In the first step, we propose a channel attention branch to refine the high-level feature maps and a spatial attention branch for the low-level ones. The refined high-level feature maps can capture more exact semantic information and the refined low-level ones can capture more accurate spatial information, which significantly improves the information capturing ability of these feature maps. In the second step, we develop a new fusion module named pooling fusing block to fuse the refined high- and low-level feature maps. This fusion block can take full advantages of the high- and low-level feature maps, leading to high-quality fusion results. To verify the efficiency of the proposed bilateral attention decoder, we adopt a lightweight network as the backbone and compare our proposed method with other state-of-the-art real-time semantic segmentation methods on the Cityscapes and Camvid datasets. Experimental results demonstrate that our proposed method can achieve better performance with a higher inference speed. Moreover, we compare our proposed network with several state-of-the-art non-real-time semantic segmentation methods and find that our proposed network can also attain better segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助的荟采纳,获得10
10秒前
Chouvikin完成签到,获得积分10
11秒前
36秒前
38秒前
41秒前
43秒前
coco发布了新的文献求助10
45秒前
51秒前
54秒前
56秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
的荟完成签到,获得积分10
1分钟前
1分钟前
的荟发布了新的文献求助10
1分钟前
李铃锐发布了新的文献求助10
1分钟前
Ivy完成签到,获得积分10
1分钟前
coco发布了新的文献求助10
1分钟前
1分钟前
1分钟前
xd完成签到,获得积分10
1分钟前
郭文钦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
YNHN完成签到 ,获得积分10
2分钟前
在水一方应助安详的面包采纳,获得10
2分钟前
2分钟前
漂亮夏兰完成签到 ,获得积分10
2分钟前
2分钟前
wonder123发布了新的文献求助10
2分钟前
小马甲应助coco采纳,获得10
2分钟前
wonder123完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
lawang发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650970
求助须知:如何正确求助?哪些是违规求助? 4782337
关于积分的说明 15052820
捐赠科研通 4809743
什么是DOI,文献DOI怎么找? 2572545
邀请新用户注册赠送积分活动 1528569
关于科研通互助平台的介绍 1487559