Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning

天蓬 遥感 环境科学 叶面积指数 树冠 卫星 农学 地理 生物 工程类 航空航天工程 考古
作者
Maitiniyazi Maimaitijiang,Vasit Sagan,Paheding Sidike,Ahmad M. Daloye,H. Erkbol,Felix Fritschi
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 1357-1357 被引量:220
标识
DOI:10.3390/rs12091357
摘要

Non-destructive crop monitoring over large areas with high efficiency is of great significance in precision agriculture and plant phenotyping, as well as decision making with regards to grain policy and food security. The goal of this research was to assess the potential of combining canopy spectral information with canopy structure features for crop monitoring using satellite/unmanned aerial vehicle (UAV) data fusion and machine learning. Worldview-2/3 satellite data were tasked synchronized with high-resolution RGB image collection using an inexpensive unmanned aerial vehicle (UAV) at a heterogeneous soybean (Glycine max (L.) Merr.) field. Canopy spectral information (i.e., vegetation indices) was extracted from Worldview-2/3 data, and canopy structure information (i.e., canopy height and canopy cover) was derived from UAV RGB imagery. Canopy spectral and structure information and their combination were used to predict soybean leaf area index (LAI), aboveground biomass (AGB), and leaf nitrogen concentration (N) using partial least squares regression (PLSR), random forest regression (RFR), support vector regression (SVR), and extreme learning regression (ELR) with a newly proposed activation function. The results revealed that: (1) UAV imagery-derived high-resolution and detailed canopy structure features, canopy height, and canopy coverage were significant indicators for crop growth monitoring, (2) integration of satellite imagery-based rich canopy spectral information with UAV-derived canopy structural features using machine learning improved soybean AGB, LAI, and leaf N estimation on using satellite or UAV data alone, (3) adding canopy structure information to spectral features reduced background soil effect and asymptotic saturation issue to some extent and led to better model performance, (4) the ELR model with the newly proposed activated function slightly outperformed PLSR, RFR, and SVR in the prediction of AGB and LAI, while RFR provided the best result for N estimation. This study introduced opportunities and limitations of satellite/UAV data fusion using machine learning in the context of crop monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
taozhiqi完成签到 ,获得积分10
1秒前
达瓦里希完成签到 ,获得积分10
1秒前
2秒前
脆脆鲨发布了新的文献求助10
3秒前
lywswxn完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
zzz完成签到 ,获得积分10
8秒前
特特雷珀萨努完成签到 ,获得积分10
9秒前
10秒前
11秒前
潇洒万仇发布了新的文献求助10
12秒前
Lion发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
abys完成签到,获得积分10
14秒前
繁花发布了新的文献求助10
16秒前
18秒前
18秒前
rorocris发布了新的文献求助10
19秒前
19秒前
19秒前
zzz发布了新的文献求助10
20秒前
20秒前
哒哒哒哒完成签到,获得积分10
21秒前
23秒前
郑小七发布了新的文献求助10
24秒前
24秒前
24秒前
zn发布了新的文献求助10
26秒前
26秒前
26秒前
vvA11发布了新的文献求助10
26秒前
eric888应助alixy采纳,获得10
27秒前
28秒前
xiaohuihui发布了新的文献求助10
29秒前
XXF完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867327
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664435
捐赠科研通 3133927
什么是DOI,文献DOI怎么找? 1728521
邀请新用户注册赠送积分活动 833038
科研通“疑难数据库(出版商)”最低求助积分说明 780517