Identifying nonadditive contributions to the hydrophobicity of chemically heterogeneous surfaces via dual-loop active learning

生物分子 化学 分子动力学 生物系统 极地的 化学物理 聚类分析 分子 单层 纳米技术 计算化学 材料科学 计算机科学 物理 有机化学 机器学习 天文 生物
作者
Atharva Kelkar,Bradley C. Dallin,Reid C. Van Lehn
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (2): 024701-024701 被引量:8
标识
DOI:10.1063/5.0072385
摘要

Hydrophobic interactions drive numerous biological and synthetic processes. The materials used in these processes often possess chemically heterogeneous surfaces that are characterized by diverse chemical groups positioned in close proximity at the nanoscale; examples include functionalized nanomaterials and biomolecules, such as proteins and peptides. Nonadditive contributions to the hydrophobicity of such surfaces depend on the chemical identities and spatial patterns of polar and nonpolar groups in ways that remain poorly understood. Here, we develop a dual-loop active learning framework that combines a fast reduced-accuracy method (a convolutional neural network) with a slow higher-accuracy method (molecular dynamics simulations with enhanced sampling) to efficiently predict the hydration free energy, a thermodynamic descriptor of hydrophobicity, for nearly 200 000 chemically heterogeneous self-assembled monolayers (SAMs). Analysis of this dataset reveals that SAMs with distinct polar groups exhibit substantial variations in hydrophobicity as a function of their composition and patterning, but the clustering of nonpolar groups is a common signature of highly hydrophobic patterns. Further molecular dynamics analysis relates such clustering to the perturbation of interfacial water structure. These results provide new insight into the influence of chemical heterogeneity on hydrophobicity via quantitative analysis of a large set of surfaces, enabled by the active learning approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
真实的含羞草完成签到,获得积分20
1秒前
汉堡包应助咸鱼好翻身采纳,获得10
1秒前
yalin发布了新的文献求助10
1秒前
hotcas完成签到,获得积分10
1秒前
2秒前
SJJ应助FUCKU采纳,获得10
2秒前
2秒前
上官若男应助jie酱拌面采纳,获得10
2秒前
冷静的台灯完成签到,获得积分10
3秒前
Ava应助神海采纳,获得10
3秒前
rain完成签到,获得积分10
3秒前
zjq完成签到,获得积分10
3秒前
4秒前
mingming1028发布了新的文献求助10
4秒前
瘦瘦的飞雪完成签到,获得积分10
4秒前
4秒前
4秒前
duwuwu完成签到,获得积分10
4秒前
key完成签到,获得积分10
5秒前
嗯哼完成签到 ,获得积分20
5秒前
摇滚蜗牛完成签到,获得积分10
5秒前
5秒前
能干的捕发布了新的文献求助30
6秒前
淳于穆完成签到,获得积分10
7秒前
8秒前
子皿完成签到,获得积分10
8秒前
陆佰完成签到 ,获得积分10
8秒前
8秒前
FU发布了新的文献求助10
8秒前
CipherSage应助yzg采纳,获得10
8秒前
GREG发布了新的文献求助10
9秒前
9秒前
科研通AI6应助夏侯以旋采纳,获得10
9秒前
9秒前
orixero应助cc采纳,获得10
11秒前
hyx发布了新的文献求助10
11秒前
积极的发卡完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552270
求助须知:如何正确求助?哪些是违规求助? 4637012
关于积分的说明 14647248
捐赠科研通 4578939
什么是DOI,文献DOI怎么找? 2511174
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457547