A machine‐learning‐based constitutive bond‐slip model for anchored CFRP strips externally bonded on concrete members

条状物 结构工程 碳纤维增强聚合物 纤维增强塑料 打滑(空气动力学) 剪切(地质) 钢筋混凝土 残余物 材料科学 砖石建筑 混凝土保护层 无筋砌体房屋 计算机科学 复合材料 工程类 算法 航空航天工程
作者
Ahmet Emin Kurtoğlu,Özgür Anıl,Abdülkadir Çevik
出处
期刊:Structural Concrete [Wiley]
卷期号:23 (3): 1828-1844 被引量:14
标识
DOI:10.1002/suco.202100647
摘要

Abstract Strengthening is often required for reinforced concrete, steel, and masonry structures or structural elements when they possess insufficient performance against external loads such as earthquakes. Recently, the use of carbon fiber‐reinforced polymers (CFRP) has been considered a viable strengthening technique alternative to traditional methods. The major concern is premature debonding failure hindering the efficient use of CFRP systems. FRP anchor systems have been used to avoid this phenomenon. This paper employs a machine learning (ML)‐based algorithm (support vector regression) to propose predictive models to simulate the bond‐slip behavior of anchored CFRP strips externally bonded to the concrete surface. A comprehensive database was constructed using the previous reports on the bond‐slip behavior of FRP‐to‐concrete joints anchored with CFRP strips. Afterwards, the collected database was used to train and validate the proposed models. The input parameters cover all possible factors, that is, compressive strength of concrete, width of concrete block, anchor hole diameter, anchor hole depth, number of anchors at one row, number of anchors at one column; elastic modulus, width, bonding length, and thickness of CFRP strip. The output parameters are maximum shear capacity, residual shear capacity, displacement values at peak shear, and residual shear. Results imply that the proposed models have high prediction accuracies with low error rates. Proposed models are also presented in code format to be easily incorporated into analysis software for practical use.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
1秒前
2秒前
胡宗俊完成签到,获得积分10
2秒前
2秒前
麦客完成签到,获得积分10
3秒前
Lucas应助蟑郎采纳,获得10
3秒前
5tcl发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
张文完成签到,获得积分10
5秒前
6秒前
6秒前
汉堡包应助hahah采纳,获得10
6秒前
善学以致用应助临河盗龙采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
璆璆的虾发布了新的文献求助30
9秒前
小白完成签到,获得积分10
9秒前
纳米果发布了新的文献求助10
9秒前
廷聿完成签到,获得积分10
9秒前
大模型应助研友_pnx37L采纳,获得10
10秒前
yaoqi发布了新的文献求助10
11秒前
12秒前
16秒前
纳米果完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
mst完成签到,获得积分10
17秒前
Draeck发布了新的文献求助10
17秒前
杀出个黎明举报求助违规成功
18秒前
风中冰香举报求助违规成功
18秒前
哈基米德举报求助违规成功
18秒前
18秒前
科研通AI2S应助Kelly采纳,获得10
19秒前
19秒前
CodeCraft应助MJJJ采纳,获得30
19秒前
20秒前
21秒前
恒恒666发布了新的文献求助10
22秒前
小马甲应助梅陇路小博采纳,获得10
22秒前
知一完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406