已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimorbidity patterns and associated factors in older Chinese: results from the China health and retirement longitudinal study

医学 中国 纵向研究 康复 中国人 老年学 物理疗法 病理 政治学 法学
作者
Quan Zhang,Xiao Han,Xinyi Zhao,Yue Wang
出处
期刊:BMC Geriatrics [BioMed Central]
卷期号:22 (1) 被引量:41
标识
DOI:10.1186/s12877-022-03154-9
摘要

This study aimed to investigate multimorbidity patterns and their associated factors among elderly population in China.A total of 10,479 participants aged at least 60 years were drawn from the 2018 wave of the China Health and Retirement Longitudinal Study (CHARLS). Latent class analysis (LCA) was performed to identify distinct multimorbidity classes based on 14 self-reported chronic conditions. The multinomial logit model was used to analyze the associated factors of multimorbidity patterns, focusing on individuals' demographic characteristics, socioeconomic status (SES), and health behaviors.Among the 10,479 participants (mean age [SD]: 69.1 [7.1]), 65.6% were identified with multimorbidity. Five multimorbidity clusters were identified by LCA: relatively healthy class (49.8%), vascular class (24.7%), respiratory class (5.6%), stomach-arthritis class (14.5%), and multisystem morbidity class (5.4%). Multinomial logit analysis with the relatively healthy class as the reference showed that participants of older age and female sex were more likely to be in the vascular class and multisystem morbidity class. The probability of being in the vascular class was significantly higher for those with high SES. Ever smoking was associated with a higher probability of being in the respiratory class and multisystem morbidity class. Physical activity was associated with lower odds of being assigned to the vascular class, respiratory class, and multisystem class.The distinct multimorbidity patterns imply that the prevention and care strategy should target a group of diseases instead of a single condition. Prevention interventions should be paid attention to for individuals with risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ABJ完成签到 ,获得积分10
1秒前
1秒前
JiangyingYu完成签到,获得积分10
2秒前
2秒前
AAAaa发布了新的文献求助20
2秒前
单山蘸水完成签到 ,获得积分10
2秒前
清爽老九发布了新的文献求助10
3秒前
蒲公英完成签到 ,获得积分10
3秒前
Akim应助猴哥采纳,获得10
3秒前
是三石啊完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
lanlanlan发布了新的文献求助10
4秒前
朴素飞薇完成签到 ,获得积分10
4秒前
峰妹完成签到 ,获得积分10
4秒前
4秒前
lalala完成签到 ,获得积分10
5秒前
Cell完成签到 ,获得积分10
5秒前
奋斗的小笼包完成签到 ,获得积分10
5秒前
杨一一完成签到 ,获得积分10
6秒前
muyassar完成签到,获得积分10
7秒前
噜噜大王发布了新的文献求助10
9秒前
arf发布了新的文献求助10
10秒前
TiAmo发布了新的文献求助10
10秒前
yao完成签到 ,获得积分10
10秒前
栗子刻苦关注了科研通微信公众号
10秒前
雨rain完成签到 ,获得积分10
11秒前
大眼瞪小眼完成签到 ,获得积分20
11秒前
小贾爱喝冰美式完成签到 ,获得积分10
11秒前
12秒前
Donger完成签到 ,获得积分10
13秒前
春山完成签到 ,获得积分10
14秒前
Ming完成签到 ,获得积分10
14秒前
林桉完成签到,获得积分10
15秒前
15秒前
ggg完成签到 ,获得积分10
16秒前
arf完成签到,获得积分20
16秒前
SDS完成签到 ,获得积分10
17秒前
mahliya完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076451
求助须知:如何正确求助?哪些是违规求助? 4295893
关于积分的说明 13386085
捐赠科研通 4117901
什么是DOI,文献DOI怎么找? 2255021
邀请新用户注册赠送积分活动 1259552
关于科研通互助平台的介绍 1192469

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10