Multimorbidity patterns and associated factors in older Chinese: results from the China health and retirement longitudinal study

医学 中国 纵向研究 康复 中国人 老年学 物理疗法 病理 政治学 法学
作者
Quan Zhang,Xiao Han,Xinyi Zhao,Yue Wang
出处
期刊:BMC Geriatrics [Springer Nature]
卷期号:22 (1) 被引量:41
标识
DOI:10.1186/s12877-022-03154-9
摘要

This study aimed to investigate multimorbidity patterns and their associated factors among elderly population in China.A total of 10,479 participants aged at least 60 years were drawn from the 2018 wave of the China Health and Retirement Longitudinal Study (CHARLS). Latent class analysis (LCA) was performed to identify distinct multimorbidity classes based on 14 self-reported chronic conditions. The multinomial logit model was used to analyze the associated factors of multimorbidity patterns, focusing on individuals' demographic characteristics, socioeconomic status (SES), and health behaviors.Among the 10,479 participants (mean age [SD]: 69.1 [7.1]), 65.6% were identified with multimorbidity. Five multimorbidity clusters were identified by LCA: relatively healthy class (49.8%), vascular class (24.7%), respiratory class (5.6%), stomach-arthritis class (14.5%), and multisystem morbidity class (5.4%). Multinomial logit analysis with the relatively healthy class as the reference showed that participants of older age and female sex were more likely to be in the vascular class and multisystem morbidity class. The probability of being in the vascular class was significantly higher for those with high SES. Ever smoking was associated with a higher probability of being in the respiratory class and multisystem morbidity class. Physical activity was associated with lower odds of being assigned to the vascular class, respiratory class, and multisystem class.The distinct multimorbidity patterns imply that the prevention and care strategy should target a group of diseases instead of a single condition. Prevention interventions should be paid attention to for individuals with risk factors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
麦穗发布了新的文献求助10
1秒前
Jean发布了新的文献求助10
1秒前
guyankuan发布了新的文献求助10
1秒前
嘉木发布了新的文献求助10
2秒前
dgdsnfds发布了新的文献求助10
3秒前
悦耳念双发布了新的文献求助10
4秒前
4秒前
HAHAHA完成签到 ,获得积分10
4秒前
5秒前
shadow发布了新的文献求助10
5秒前
Kytwp2022发布了新的文献求助20
5秒前
zzcres完成签到,获得积分10
5秒前
gladuhere完成签到 ,获得积分10
5秒前
6秒前
王五一发布了新的文献求助10
9秒前
9秒前
橙皮or陈皮完成签到,获得积分10
9秒前
StarRiver发布了新的文献求助30
9秒前
10秒前
过时的热狗完成签到,获得积分10
11秒前
归零者发布了新的文献求助10
13秒前
欢喜风完成签到,获得积分10
13秒前
泡泡完成签到 ,获得积分10
14秒前
14秒前
邓倩发布了新的文献求助30
15秒前
寂寞的茹妖完成签到,获得积分10
15秒前
Hello应助zmy采纳,获得10
15秒前
深情安青应助yulin采纳,获得10
16秒前
18秒前
关于完成签到,获得积分10
19秒前
天天向上完成签到,获得积分10
19秒前
19秒前
活力的冷雪完成签到,获得积分10
20秒前
研友_8DrX3n完成签到,获得积分10
21秒前
天天向上发布了新的文献求助10
22秒前
传奇3应助洁净的智宸采纳,获得10
22秒前
22秒前
JUN'KING发布了新的文献求助10
23秒前
qian916244159完成签到,获得积分10
23秒前
仲半邪发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497239
求助须知:如何正确求助?哪些是违规求助? 4594744
关于积分的说明 14446447
捐赠科研通 4527478
什么是DOI,文献DOI怎么找? 2480884
邀请新用户注册赠送积分活动 1465248
关于科研通互助平台的介绍 1437903