亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor

计算机科学 人工智能 目标检测 增采样 对象(语法) 特征(语言学) 精确性和召回率 背景(考古学) 计算机视觉 点(几何) 模式识别(心理学) 算法 图像(数学) 数学 语言学 生物 哲学 古生物学 几何学
作者
Haitong Lou,Xuehu Duan,Junmei Guo,Haiying Liu,Jason Gu,Lingyun Bi,Haonan Chen
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2323-2323 被引量:217
标识
DOI:10.3390/electronics12102323
摘要

Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
shenghaowen完成签到,获得积分10
11秒前
科盲TCB发布了新的文献求助10
13秒前
Owen应助CSun采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
科盲TCB完成签到,获得积分10
20秒前
小张完成签到 ,获得积分10
24秒前
24秒前
遇上就这样吧应助SCI牛马采纳,获得60
27秒前
28秒前
无羡发布了新的文献求助10
29秒前
30秒前
SCINEXUS完成签到,获得积分0
33秒前
CSun发布了新的文献求助10
34秒前
37秒前
Ava应助英勇的凌蝶采纳,获得10
39秒前
量子星尘发布了新的文献求助10
41秒前
wenfeisun发布了新的文献求助10
43秒前
生生完成签到,获得积分20
45秒前
lingo完成签到 ,获得积分10
46秒前
在水一方应助wenfeisun采纳,获得10
53秒前
小马甲应助生生采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
传奇完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Yang完成签到 ,获得积分10
1分钟前
Nakjeong完成签到 ,获得积分10
1分钟前
谭平完成签到 ,获得积分10
1分钟前
1分钟前
祖之微笑发布了新的文献求助10
1分钟前
1分钟前
大红参发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助祖之微笑采纳,获得10
1分钟前
顾矜应助大红参采纳,获得10
1分钟前
aDou完成签到 ,获得积分10
1分钟前
jim完成签到 ,获得积分10
1分钟前
小二郎应助薇薇采纳,获得20
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
Plasmonics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867912
求助须知:如何正确求助?哪些是违规求助? 3410217
关于积分的说明 10666890
捐赠科研通 3134473
什么是DOI,文献DOI怎么找? 1729063
邀请新用户注册赠送积分活动 833175
科研通“疑难数据库(出版商)”最低求助积分说明 780620