DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor

计算机科学 人工智能 目标检测 增采样 对象(语法) 特征(语言学) 精确性和召回率 背景(考古学) 计算机视觉 点(几何) 模式识别(心理学) 算法 图像(数学) 数学 语言学 生物 哲学 古生物学 几何学
作者
Haitong Lou,Xuehu Duan,Junmei Guo,Haiying Liu,Jason Gu,Lingyun Bi,Haonan Chen
出处
期刊:Electronics [MDPI AG]
卷期号:12 (10): 2323-2323 被引量:329
标识
DOI:10.3390/electronics12102323
摘要

Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色不评发布了新的文献求助10
1秒前
min完成签到 ,获得积分10
1秒前
Zx_1993应助Sano采纳,获得10
2秒前
鸡蛋黄发布了新的文献求助10
2秒前
2秒前
www完成签到,获得积分10
2秒前
3秒前
lla2321发布了新的文献求助10
4秒前
CipherSage应助cyj采纳,获得10
4秒前
虚幻小凡发布了新的文献求助10
5秒前
6秒前
Lucas应助kmoonkkk采纳,获得10
6秒前
8秒前
tzy完成签到,获得积分10
9秒前
我的昵称发布了新的文献求助10
9秒前
yinyanlong应助昂昂采纳,获得10
10秒前
10秒前
楠楠完成签到,获得积分10
11秒前
CangZm1完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
HalaMadrid完成签到,获得积分10
13秒前
小小猪发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
浮游应助大王采纳,获得10
14秒前
llllll应助wh采纳,获得10
15秒前
lla2321完成签到,获得积分10
15秒前
酷波er应助wenjiegao采纳,获得10
16秒前
16秒前
BrightForever发布了新的文献求助10
17秒前
zhengguibin发布了新的文献求助10
17秒前
gaterina完成签到,获得积分10
18秒前
孤独谷蕊完成签到,获得积分10
19秒前
狄百招发布了新的文献求助10
19秒前
19秒前
21秒前
徐恺完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411568
求助须知:如何正确求助?哪些是违规求助? 4529098
关于积分的说明 14117750
捐赠科研通 4443714
什么是DOI,文献DOI怎么找? 2438381
邀请新用户注册赠送积分活动 1430605
关于科研通互助平台的介绍 1408214