亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent

可解释性 计算机科学 水质 化学需氧量 人工智能 污水处理 人工神经网络 机器学习 生化需氧量 深度学习 废水 环境科学 工艺工程 环境工程 工程类 生态学 生物
作者
Yituo Zhang,Chaolin Li,Hengpan Duan,Kefen Yan,Jihong Wang,Wenhui Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:467: 143483-143483 被引量:73
标识
DOI:10.1016/j.cej.2023.143483
摘要

Rapid and accurate detection of time-delayed water quality indicators (WQIs) is the key to achieving fast feedback regulation of wastewater treatment plants (WWTPs) that enables its energy-efficient operation and high tolerance towards shock sewage loads. However, advanced oxidation methods are costly, and data-driven modeling methods based on traditional machine learning algorithms for detecting time-delayed WQIs have limited detection accuracy. This work develops deep learning models based on long short-term memory (LSTM) neural networks to detect time-delayed WQIs in WWTPs intake accurately. The lack of interpretability of the deep learning models hampers the optimization of the developed LSTM models in applications. Therefore, a global sensitivity analysis (GSA) based on Shapley additive explanations (SHAP) is performed to quantify the contribution of the input indicators to detection results of the developed LSTM models. The direct contributions provide the basis for optimizing the input indicators to achieve more cost-effective modeling detection. In the case study, the developed LSTM models achieved good accuracy (R2 of 0.9141, 0.9239, and 0.9040, respectively) in detecting chemical oxygen demand, total nitrogen, and total phosphorus in the influent of a WWTP, outperforming the four types of baseline models. According to the SHAP values, the contributions of dissolved oxygen, turbidity, and ammonia nitrogen to the above detection targets are always in the top third of all input indicators, which are more outstanding than meteorological indicators. Removing the indicator with the smallest SHAP value reduces the build and run costs of the models with minimal loss of detection accuracy. Combining deep learning and GSA to detect WWTPs influent is a novel and effective attempt. This attempt provides a more sustainable solution for rapid and accurate detection of time-delayed WQIs, which drives WWTPs' operation in an intelligent, clean, and safe direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小伍完成签到,获得积分10
6秒前
归途关注了科研通微信公众号
18秒前
popingcandy完成签到,获得积分10
19秒前
25秒前
佚名123发布了新的文献求助10
30秒前
31秒前
归途发布了新的文献求助10
36秒前
儒雅的山河完成签到 ,获得积分10
39秒前
佚名123完成签到,获得积分10
39秒前
42秒前
多边棱发布了新的文献求助10
47秒前
53秒前
知性的夏之完成签到 ,获得积分10
59秒前
自由凌波发布了新的文献求助30
1分钟前
自由凌波完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
LiXingchen完成签到,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
遍空发布了新的文献求助10
1分钟前
科研通AI6应助zz采纳,获得10
1分钟前
Freya发布了新的文献求助60
2分钟前
2分钟前
2分钟前
阿巴阿巴发布了新的文献求助10
2分钟前
2分钟前
阿巴阿巴完成签到,获得积分10
2分钟前
图图发布了新的文献求助30
2分钟前
Ava应助阿巴阿巴采纳,获得10
2分钟前
2分钟前
刘慧发布了新的文献求助10
2分钟前
七色光完成签到,获得积分10
3分钟前
万能图书馆应助大肥羊采纳,获得30
3分钟前
Freya完成签到,获得积分10
3分钟前
3分钟前
JASON应助犹豫幻丝采纳,获得10
3分钟前
精明凡双应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653008
求助须知:如何正确求助?哪些是违规求助? 4039745
关于积分的说明 12494332
捐赠科研通 3730347
什么是DOI,文献DOI怎么找? 2059073
邀请新用户注册赠送积分活动 1089766
科研通“疑难数据库(出版商)”最低求助积分说明 970913