清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning based data-driven model for detecting time-delay water quality indicators of wastewater treatment plant influent

可解释性 计算机科学 水质 化学需氧量 人工智能 污水处理 人工神经网络 机器学习 生化需氧量 深度学习 废水 环境科学 工艺工程 环境工程 工程类 生态学 生物
作者
Yituo Zhang,Chaolin Li,Hengpan Duan,Kefen Yan,Jihong Wang,Wenhui Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:467: 143483-143483 被引量:61
标识
DOI:10.1016/j.cej.2023.143483
摘要

Rapid and accurate detection of time-delayed water quality indicators (WQIs) is the key to achieving fast feedback regulation of wastewater treatment plants (WWTPs) that enables its energy-efficient operation and high tolerance towards shock sewage loads. However, advanced oxidation methods are costly, and data-driven modeling methods based on traditional machine learning algorithms for detecting time-delayed WQIs have limited detection accuracy. This work develops deep learning models based on long short-term memory (LSTM) neural networks to detect time-delayed WQIs in WWTPs intake accurately. The lack of interpretability of the deep learning models hampers the optimization of the developed LSTM models in applications. Therefore, a global sensitivity analysis (GSA) based on Shapley additive explanations (SHAP) is performed to quantify the contribution of the input indicators to detection results of the developed LSTM models. The direct contributions provide the basis for optimizing the input indicators to achieve more cost-effective modeling detection. In the case study, the developed LSTM models achieved good accuracy (R2 of 0.9141, 0.9239, and 0.9040, respectively) in detecting chemical oxygen demand, total nitrogen, and total phosphorus in the influent of a WWTP, outperforming the four types of baseline models. According to the SHAP values, the contributions of dissolved oxygen, turbidity, and ammonia nitrogen to the above detection targets are always in the top third of all input indicators, which are more outstanding than meteorological indicators. Removing the indicator with the smallest SHAP value reduces the build and run costs of the models with minimal loss of detection accuracy. Combining deep learning and GSA to detect WWTPs influent is a novel and effective attempt. This attempt provides a more sustainable solution for rapid and accurate detection of time-delayed WQIs, which drives WWTPs' operation in an intelligent, clean, and safe direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
widesky777完成签到 ,获得积分0
10秒前
11秒前
王木木发布了新的文献求助10
13秒前
18秒前
王木木发布了新的文献求助10
22秒前
26秒前
31秒前
31秒前
chichenglin完成签到 ,获得积分0
38秒前
chcmy完成签到 ,获得积分0
47秒前
合适的梦菡完成签到,获得积分10
52秒前
蓝意完成签到,获得积分0
59秒前
衣蝉完成签到 ,获得积分10
1分钟前
zhao完成签到 ,获得积分10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
科科通通完成签到,获得积分10
1分钟前
zyjsunye完成签到 ,获得积分0
1分钟前
满意的伊完成签到,获得积分10
2分钟前
2分钟前
xiangwang完成签到 ,获得积分10
2分钟前
飞翔的企鹅完成签到,获得积分10
2分钟前
M先生完成签到,获得积分10
2分钟前
地表飞猪应助飞翔的企鹅采纳,获得50
2分钟前
DrS完成签到,获得积分10
2分钟前
快船总冠军完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
herpes完成签到 ,获得积分0
3分钟前
znchick完成签到,获得积分10
3分钟前
汉堡包应助znchick采纳,获得10
3分钟前
铜豌豆完成签到 ,获得积分10
3分钟前
小zz完成签到 ,获得积分10
3分钟前
跳跃的太阳完成签到,获得积分10
3分钟前
ANESTHESIA_XY完成签到 ,获得积分10
3分钟前
彩色的芝麻完成签到 ,获得积分10
3分钟前
龙猫爱看书完成签到,获得积分10
4分钟前
sysi完成签到 ,获得积分10
4分钟前
wenbinvan完成签到,获得积分0
4分钟前
Dr.Tang完成签到 ,获得积分10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244270
捐赠科研通 3045416
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524