Diagnostic accuracy of artificial intelligence assisted clinical imaging in the detection of oral potentially malignant disorders and oral cancer: A systematic review and meta-analysis

诊断优势比 医学 接收机工作特性 荟萃分析 曲线下面积 林地 癌症 优势比 诊断试验中的似然比 试验预测值 内科学 放射科
作者
Jingwen Li,Witold Kot,Colman McGrath,Bik Wan Amy Chan,Joshua W. K. Ho,Li Wu Zheng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001469
摘要

Background: The objective of this study is to examine the application of AI algorithms in detecting OPMD and oral cancerous lesions, and to evaluate the accuracy variations among different imaging tools employed in these diagnostic processes. Materials and methods: A systematic search was conducted in four databases: Embase, Web of Science, PubMed, and Scopus. The inclusion criteria included studies using machine learning algorithms to provide diagnostic information on specific oral lesions, prospective or retrospective design, and inclusion of OPMD. Sensitivity and specificity analyses were also required. Forest plots were generated to display overall diagnostic odds ratio (DOR), sensitivity, specificity, negative predictive values, and summary receiver operating characteristic (SROC) curves. Meta-regression analysis was conducted to examine potential differences among different imaging tools. Results: The overall DOR for AI-based screening of OPMD and oral mucosal cancerous lesions from normal mucosa was 68.438 (95%CI= [39.484, 118.623], I 2 = 86%). The area under the SROC curve was 0.938, indicating excellent diagnostic performance. AI-assisted screening showed a sensitivity of 89.9% (95%CI= [0.866,0.925]; I 2 = 81%), specificity of 89.2% (95%CI= [0.851,0.922], I2 = 79%), and a high negative predictive value of 89.5% (95%CI= [0.851; 0.927], I 2 = 96%). Meta-regression analysis revealed no significant difference among the three image tools. After generating a GOSH plot, the DOR was calculated to be 49.30, and the area under the SROC curve was 0.877. Additionally, sensitivity, specificity, and negative predictive value were 90.5% (95%CI [0.873,0.929], I 2 =4%), 87.0% (95%CI [0.813,0.912], I 2 =49%) and 90.1% (95%CI [0.860,0.931], I 2 =57%), respectively. Subgroup analysis showed that clinical photography had the highest diagnostic accuracy. Conclusions: AI-based detection using clinical photography shows a high diagnostic odds ratio and is easily accessible in the current era with billions of phone subscribers globally. This indicates that there is significant potential for AI to enhance the diagnostic capabilities of general practitioners to the level of specialists by utilizing clinical photographs, without the need for expensive specialized imaging equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
迪歪歪应助科研通管家采纳,获得10
刚刚
海蓝云天应助科研通管家采纳,获得10
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
外向薯片发布了新的文献求助10
1秒前
顾矜应助科研通管家采纳,获得20
1秒前
迪歪歪应助科研通管家采纳,获得10
1秒前
kongxiangjiu应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
lk发布了新的文献求助10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
zoma完成签到,获得积分10
1秒前
2秒前
蜜尾石莲猬关注了科研通微信公众号
2秒前
2秒前
Owen应助务实的姿采纳,获得10
2秒前
112233445566完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
ANKAR发布了新的文献求助30
5秒前
5秒前
5秒前
咖啡泡茶完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959