Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes

单加氧酶 异构化 细胞色素P450 辅因子 化学 催化循环 定向进化 NAD+激酶 均分解 生物催化 小分子 立体化学 催化作用 加氧酶 组合化学 生物化学 反应机理 激进的 突变体 基因
作者
Shengxian Fan,Zhiqi Cong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:27
标识
DOI:10.1021/acs.accounts.3c00746
摘要

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C-H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid-base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O-O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O-O cleavage of the adduct Fe-O-OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C-H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C-H bonds in synthetic chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
隐形曼青应助Max采纳,获得30
2秒前
完美梨愁完成签到 ,获得积分10
2秒前
圆圈发布了新的文献求助10
2秒前
3秒前
3秒前
Gary发布了新的文献求助30
3秒前
剁手党发布了新的文献求助10
4秒前
无铭亚空发布了新的文献求助10
4秒前
Function完成签到,获得积分10
5秒前
7秒前
7秒前
哭泣的小之完成签到,获得积分10
7秒前
8秒前
朔方姑娘吧完成签到 ,获得积分10
8秒前
隐形曼青应助缥缈的又亦采纳,获得30
9秒前
9秒前
斯文败类应助Lowe采纳,获得10
10秒前
烤冷面应助冯万强采纳,获得10
12秒前
衣带渐宽终不悔完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
Ricky小强发布了新的文献求助10
14秒前
16秒前
16秒前
鱼yu完成签到,获得积分10
16秒前
炙热乌冬面完成签到 ,获得积分10
17秒前
佳佳完成签到,获得积分10
17秒前
我是一块小饼干完成签到,获得积分20
17秒前
manon完成签到 ,获得积分10
18秒前
陈思杰发布了新的文献求助10
18秒前
顺儿发布了新的文献求助10
19秒前
Levon完成签到,获得积分10
20秒前
21秒前
周国超发布了新的文献求助10
21秒前
WANDour完成签到,获得积分10
21秒前
21秒前
搜集达人应助兰彻采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5318095
求助须知:如何正确求助?哪些是违规求助? 4460326
关于积分的说明 13878275
捐赠科研通 4350776
什么是DOI,文献DOI怎么找? 2389539
邀请新用户注册赠送积分活动 1383643
关于科研通互助平台的介绍 1353101