Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes

单加氧酶 异构化 细胞色素P450 辅因子 化学 催化循环 定向进化 NAD+激酶 均分解 生物催化 小分子 立体化学 催化作用 加氧酶 组合化学 生物化学 反应机理 激进的 突变体 基因
作者
Shengxian Fan,Zhiqi Cong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:14
标识
DOI:10.1021/acs.accounts.3c00746
摘要

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C–H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid–base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O–O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O–O cleavage of the adduct Fe–O–OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C–H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C–H bonds in synthetic chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TZMY完成签到,获得积分10
刚刚
刚刚
misstwo完成签到,获得积分10
刚刚
老奈发布了新的文献求助10
1秒前
yinggill完成签到 ,获得积分10
1秒前
4秒前
4秒前
Ava应助NXK采纳,获得10
6秒前
科研通AI5应助ccc采纳,获得10
7秒前
yangmiemie发布了新的文献求助10
7秒前
小熊同学发布了新的文献求助10
11秒前
11秒前
aa完成签到 ,获得积分10
13秒前
韦老虎发布了新的文献求助100
15秒前
甜蜜笑阳完成签到,获得积分10
15秒前
所所应助满意恋风采纳,获得10
17秒前
比大家发布了新的文献求助10
17秒前
39完成签到,获得积分10
20秒前
故意的初阳完成签到 ,获得积分10
20秒前
vkl完成签到 ,获得积分10
21秒前
22秒前
25秒前
角鸮完成签到,获得积分10
26秒前
小彻完成签到,获得积分10
27秒前
愉快彩虹完成签到,获得积分10
28秒前
美好鞅发布了新的文献求助10
29秒前
29秒前
呵呵喊我完成签到,获得积分10
30秒前
will发布了新的文献求助30
30秒前
缓慢冬天完成签到,获得积分10
31秒前
桃桃星冰乐完成签到,获得积分10
31秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
CipherSage应助科研通管家采纳,获得10
33秒前
酷波er应助科研通管家采纳,获得10
33秒前
共享精神应助科研通管家采纳,获得10
33秒前
33秒前
李健应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878