Emerging Strategies for Modifying Cytochrome P450 Monooxygenases into Peroxizymes

单加氧酶 异构化 细胞色素P450 辅因子 化学 催化循环 定向进化 NAD+激酶 均分解 生物催化 小分子 立体化学 催化作用 加氧酶 组合化学 生物化学 反应机理 激进的 突变体 基因
作者
Shengxian Fan,Zhiqi Cong
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:14
标识
DOI:10.1021/acs.accounts.3c00746
摘要

ConspectusCytochrome P450 monooxygenase is a versatile oxidizing enzyme with great potential in synthetic chemistry and biology. However, the dependence of its catalytic function on the nicotinamide cofactor NAD(P)H and redox partner proteins limits the practical catalytic application of P450 in vitro. An alternative to expensive cofactors is low-cost H2O2, which can be used directly to exploit the catalytic potential of P450s. However, the peroxide shunt pathway is generally inefficient at driving P450 catalysis compared to normal NAD(P)H-dependent activity. Over the last few decades, the scientific community has made continuous efforts to use directed evolution or site-directed mutagenesis to modify P450 monooxygenases into their peroxizyme modes─peroxygenase and peroxidase. Despite significant progress, obtaining efficient P450 peroxizymes remains a huge challenge. Here, we summarize our efforts to modulate peroxizyme activity in P450 monooxygenases and exploit their catalytic applications in challenging selective C–H oxidation, oxygenation, and oxyfunctionalization over the past seven years. We first developed a dual-functional small molecule (DFSM) strategy for transforming P450BM3 monooxygenase into peroxygenase. In this strategy, the typical DFSM, such as N-(ω-imidazolyl)-hexanoyl-l-phenylalanine (Im-C6-Phe), binds to the P450BM3 protein with an anchoring group at one end and plays a general acid–base catalytic role in the activation of H2O2 with an imidazolyl group at the other end. Compared with the O–O homolysis mechanism in the absence of DFSM, the addition of DFSM efficiently enables the heterolytic O–O cleavage of the adduct Fe–O–OH, thus being favored for the formation of active species compound I, which has been demonstrated by combining crystallographic and theoretical calculations. Furthermore, protein engineering showed the unique catalytic performance of DFSM-facilitated P450 peroxygenase for the highly difficult selective oxidation of C–H bonds. This catalytic performance was demonstrated during the chemoselective hydroxylation of gaseous alkanes, regioselective O-demethylation of aryl ethers, highly (R)-enantioselective epoxidation of styrene, and regio- and enantiomerically diverse hydroxylation of alkylbenzenes. Second, we demonstrated that DFSM-facilitated P450BM3 peroxygenase could be effectively switched to an efficient peroxidase mode through mechanism-guided protein engineering of redox-sensitive residues. Utilizing the peroxidase function of P450 enabled the direct nitration of unsaturated hydrocarbons including phenols, aromatic amines, and styrene derivatives, which was not only the P450-catalyzed direct nitration of phenols and aromatic amines for the first time but also the first example of the direct biological nitration of olefins. Finally, we report an H2O2 tunnel engineering strategy to enable peroxygenase activity in several different P450 monooxygenases for the first time, providing a general approach for accessing engineered P450 peroxygenases. In this Account, we highlight the emerging strategies we have developed for producing practical P450 peroxizyme biocatalysts. Although the DFSM strategy is primarily applied to P450BM3 to date, both strategies of redox-sensitive residue engineering and H2O2 tunnel engineering show great potential to extend to other P450s. These strategies have expanded the scope of applications of P450 chemistry and catalysis. Additionally, they provide a unique solution to the challenging selective oxidation of inert C–H bonds in synthetic chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LPL完成签到,获得积分10
1秒前
所所应助机智的凡采纳,获得10
1秒前
1秒前
heart完成签到,获得积分10
1秒前
周可以发布了新的文献求助10
3秒前
3秒前
orixero应助读书的时候采纳,获得10
4秒前
Owen应助我在青年湖旁采纳,获得10
5秒前
6秒前
Str0n发布了新的文献求助10
7秒前
CipherSage应助jgpiao采纳,获得10
9秒前
领导范儿应助FengYun采纳,获得10
9秒前
科研通AI5应助周可以采纳,获得10
9秒前
10秒前
笑点低的泥猴桃应助liyizhe采纳,获得10
11秒前
11秒前
今后应助frank采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得20
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
cherlie应助科研通管家采纳,获得10
11秒前
cherlie应助科研通管家采纳,获得10
11秒前
cherlie应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
cherlie应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
李健的小迷弟应助王小西采纳,获得10
12秒前
科研小黑应助Steven采纳,获得10
13秒前
14秒前
于骁完成签到,获得积分10
14秒前
14秒前
demonnnnn发布了新的文献求助20
16秒前
胡胡发布了新的文献求助10
18秒前
pluto应助全文采纳,获得10
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084066
求助须知:如何正确求助?哪些是违规求助? 3623173
关于积分的说明 11493721
捐赠科研通 3337751
什么是DOI,文献DOI怎么找? 1835001
邀请新用户注册赠送积分活动 903649
科研通“疑难数据库(出版商)”最低求助积分说明 821768