Multi-scale one-dimensional convolution tool wear monitoring based on multi-model fusion learning skills

稳健性(进化) 人工智能 计算机科学 机器学习 残余物 卷积(计算机科学) 工程类 数据挖掘 人工神经网络 算法 生物化学 化学 基因
作者
Wei Ma,Xianli Liu,Caixu Yue,Lihui Wang,Steven Y. Liang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 69-98 被引量:19
标识
DOI:10.1016/j.jmsy.2023.07.007
摘要

Effective tool wear monitoring (TWM) is crucial for accurately assessing the degree of tool wear, guiding tool replacement during actual cutting processes, ensuring stable machine operation, and improving workpiece processing quality. With the arrival of the era of Big data, more and more data-driven monitoring methods are used for TWM problems, but it also exposes the problems of over reliance on artificial feature extraction and selection, low robustness of the actual industrial environment and poor generalization of different machining processes. To solve these problems, this paper proposes a multi-scale one-dimensional convolution (MODC-MMFL) end-to-end TWM integrated network model based on multi-model fusion learning (MMFL) skills. Firstly, multi-scale local features of multi-sensor signals are adaptively extracted by multi-scale one-dimensional convolution (MODC) network, to realize multi-feature fusion. Then, using MMFL skills, the MMFL network is composed of deep attention temporal convolutional network (DATCN) and stacked bidirectional gate recurrent unit network (SBIGRU), parallel learning time series features related to tool wear characteristics,and use a fusion layer to fuse these learned features, in which residual channel attention mechanism (RCAM) is used to improve network performance in DATCN network. Finally, the predicted tool wear value is output by fully connected regression network (FCR). In addition, this paper uses the PHM tool wear dataset to conduct experimental study on the proposed model, first verifying the effectiveness of the proposed model. Then, ablation experiments were conducted to investigate the impact of hyper-parameters on the predictive performance of the model. The model was enhanced through hyper-parameter tuning, and a generalized enhanced model was established. The experimental results showed that the enhanced model had better predictive performance compared to ordinary models. Finally, Gaussian noise is added to the original signal of the PHM tool wear dataset to simulate the high noise signal of the actual industrial environment. The noise signal is used to carry out experimental study on the enhanced model. The experimental results show that the enhanced model still has good prediction performance in the high noise environment and has high robustness to the actual industrial environment. After the above research, this paper uses the NASA tool wear dataset to conduct experimental study on the proposed model. The experimental results show that the proposed model has good predictive performance for different machining processes, verifying the generalizability of the proposed model for different machining processes. In summary, the model proposed in this paper can accurately predict tool wear values based on processing monitoring information, and has good predictive performance, anti-interference ability, and environmental adaptability, making it very suitable for practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静绮彤发布了新的文献求助40
刚刚
科研通AI5应助赵创采纳,获得10
1秒前
1秒前
2秒前
大个应助yaozi采纳,获得10
2秒前
didi发布了新的文献求助30
2秒前
3秒前
Hello应助殷勤的秋荷采纳,获得10
3秒前
高会和发布了新的文献求助10
5秒前
小王完成签到,获得积分20
5秒前
5秒前
5秒前
轩贝完成签到,获得积分10
6秒前
大模型应助Luxuehua采纳,获得30
7秒前
8秒前
sa1t发布了新的文献求助10
8秒前
思源应助给我一块钱采纳,获得10
8秒前
adore发布了新的文献求助30
8秒前
史迪仔发布了新的文献求助20
9秒前
太阳完成签到 ,获得积分10
10秒前
阿西西发布了新的文献求助10
12秒前
传奇3应助嘻嘻采纳,获得10
12秒前
达鸟啊完成签到,获得积分20
12秒前
12秒前
健康的忆寒完成签到,获得积分20
14秒前
无语的沛春完成签到,获得积分10
15秒前
善学以致用应助st采纳,获得10
17秒前
ardejiang发布了新的文献求助10
17秒前
17秒前
mufulee完成签到,获得积分10
18秒前
达鸟啊发布了新的文献求助10
20秒前
阿西西完成签到,获得积分20
20秒前
LH完成签到,获得积分10
20秒前
21秒前
sa1t完成签到,获得积分10
26秒前
27秒前
29秒前
努力生活的小柴完成签到 ,获得积分10
29秒前
史迪仔完成签到,获得积分10
30秒前
adore完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787261
求助须知:如何正确求助?哪些是违规求助? 3332885
关于积分的说明 10257979
捐赠科研通 3048284
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287