Machine learning identifies individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death who have unrealised opportunities to reduce future cardiovascular risk

医学 重症监护医学 心血管健康 疾病 心脏病学 内科学
作者
Ramesh Nadarajah,Ali Wahab,Catherine Reynolds,Mohammad Haris,Asad Bhatty,Ben Hurdus,Umair Nadeem,Simon Bennet,Harriet Larvin,Jianhua Wu,C P Gale
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2689
摘要

Abstract Background Machine learning may be able to identify individuals at risk of cardio-renal-metabolic events using routinely-collected data, and these individuals may be suitable for targeted preventative strategies.(1, 2) Purpose To train and test a machine learning algorithm to identify individuals at higher risk of incident cardio-renal-metabolic diseases and cardiovascular death, and then establish if there are opportunities to reduce their future cardiovascular risk. Methods We trained a random classifier (OPTIMISE) in UK primary care EHR data from 2 081 139 individuals aged ≥30 years (Jan 2, 1998, Nov 30, 2018), randomly divided into training (80%) and testing (20%) datasets. We calculated the cumulative incidence rate for ten cardio-renal-metabolic diseases and death. Fine and Gray’s models with competing risk of death were fit for each outcome between higher and lower predicted risk. In a multi-centre pilot interventional single arm study consenting individuals aged ≥30 years at higher predicted risk received cardio-renal-metabolic phenotyping and assessment for guideline target attainment. Results In the testing dataset (n = 416 228), individuals at higher predicted risk had higher long-term risk of heart failure (HR 12.54), aortic stenosis (HR 9.98), AF (HR 8·75), stroke/TIA (HR 8.07), CKD (HR 6.85), PVD (HR 6.62), valvular heart disease (HR 6.49), MI (HR 5.02), diabetes (HR 2.05) and COPD (HR 2.02) (Figure 1). This cohort were also at higher risk of death (HR 10.45), accounting for 74% of cardiovascular deaths (8 582 of 11 676) during 10-year follow up. Of 82 higher risk patients in the pilot study (mean age 71.6 years (SD 7.5), 50% women), the prevalence of cardio-renal-metabolic disease was high (Table 1), and there were opportunities to reduce future cardiovascular risk. Of higher risk patients with hypertension, 58.5% (31/53) of those aged <80 years had a systolic blood pressure (SBP)>140mmHg, and 54.5% (6/11) of those aged ≥80 years had a SBP >150mmHg. Of those with type 2 diabetes and co-existent ASCVD, only 23.1% (3/13) were on SGLT2 inhibitor therapy. Of higher risk patients on statin therapy, 37.0% (20/54) had LDL-cholesterol >1.8 mmol/L, and 52.0% (12/25) of patients with previous ASCVD had an LDL-cholesterol >1.4mmol/L. Furthermore, 19.5% (16/82) of the higher risk cohort had undiagnosed moderate or high risk CKD; who were infrequently prescribed a statin (41.7%; 5/12), ACE-i/ARB therapy with co-existent hypertension (61.5%. 8/13), or SGLT2 inhibitor with co-existent diabetes (83.3% (5/6)). Obesity was present in 49%, and 17% (14/82) were eligible for GLP-1 RA therapy. Conclusions The machine learning OPTIMISE algorithm can identify people at higher risk of cardio-renal-metabolic diseases and death using routinely collected data. On prospective evaluation higher risk individuals have unrecorded and undertreated cardio-renal-metabolic diseases, which are actionable targets for preventative care.Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助舒克采纳,获得10
1秒前
1秒前
Nuyoah丶09完成签到,获得积分10
1秒前
2秒前
2秒前
哈哈哈发布了新的文献求助10
3秒前
研友_VZG7GZ应助wang采纳,获得10
3秒前
henry完成签到,获得积分10
4秒前
sloox完成签到,获得积分10
4秒前
黄浦江完成签到,获得积分20
5秒前
迅速大白完成签到 ,获得积分10
5秒前
张张完成签到,获得积分10
6秒前
cyy2339发布了新的文献求助10
6秒前
领导范儿应助panda采纳,获得10
6秒前
6秒前
7秒前
教育厮完成签到,获得积分10
7秒前
7秒前
JamesPei应助怕孤单的平卉采纳,获得10
8秒前
9秒前
顾矜应助xxxka采纳,获得10
9秒前
姜露萍发布了新的文献求助30
9秒前
10秒前
打打应助顶针采纳,获得10
11秒前
11秒前
一一发布了新的文献求助10
12秒前
sloox发布了新的文献求助10
12秒前
12秒前
guard发布了新的文献求助10
12秒前
SCI完成签到,获得积分10
12秒前
12秒前
梁帅哥发布了新的文献求助10
13秒前
橘子完成签到,获得积分20
14秒前
14秒前
zln完成签到,获得积分10
15秒前
liu发布了新的文献求助10
15秒前
SmileLin发布了新的文献求助10
16秒前
喜悦宛凝发布了新的文献求助10
17秒前
jqy完成签到,获得积分10
17秒前
终梦应助笑点低傻A采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481669
求助须知:如何正确求助?哪些是违规求助? 4582673
关于积分的说明 14386112
捐赠科研通 4511427
什么是DOI,文献DOI怎么找? 2472323
邀请新用户注册赠送积分活动 1458599
关于科研通互助平台的介绍 1432119