SemiH: DFT Hamiltonian neural network training with semi-supervised learning

人工神经网络 培训(气象学) 人工智能 计算机科学 机器学习 物理 气象学
作者
Yucheol Cho,Guenseok Choi,Gyeongdo Ham,Mincheol Shin,Dae‐Shik Kim
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (3): 035060-035060
标识
DOI:10.1088/2632-2153/ad7227
摘要

Abstract Over the past decades, density functional theory (DFT) calculations have been utilized in various fields such as materials science and semiconductor devices. However, due to the inherent nature of DFT calculations, which rigorously consider interactions between atoms, they require significant computational cost. To address this, extensive research has recently focused on training neural networks to replace DFT calculations. However, previous methods for training neural networks necessitated an extensive number of DFT simulations to acquire the ground truth (Hamiltonians). Conversely, when dealing with a limited amount of training data, deep learning models often display increased errors in predicting Hamiltonians and band structures for testing data. This phenomenon poses the potential risk of generating inaccurate physical interpretations, including the emergence of unphysical branches within band structures. To tackle this challenge, we propose a novel deep learning-based method for calculating DFT Hamiltonians, specifically tailored to produce accurate results with limited training data. Our framework not only employs supervised learning with the calculated Hamiltonian but also generates pseudo Hamiltonians (targets for unlabeled data) and trains the neural networks on unlabeled data. Particularly, our approach, which leverages unlabeled data, is noteworthy as it marks the first attempt in the field of neural network Hamiltonians. Our framework showcases the superior performance of our framework compared to the state-of-the-art approach across various datasets, such as MoS 2 , Bi 2 Te 3 , HfO 2 , and InGaAs. Moreover, our framework demonstrates enhanced generalization performance by effectively utilizing unlabeled data, achieving noteworthy results when evaluated on data more complex than the training set, such as configurations with more atoms and temperature ranges outside the training data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的远望完成签到,获得积分10
1秒前
皓首穷经发布了新的文献求助10
1秒前
眯眯眼的以蕊完成签到,获得积分10
2秒前
2秒前
3秒前
ywindm完成签到,获得积分10
4秒前
苗儿完成签到,获得积分10
4秒前
zjy147完成签到,获得积分10
4秒前
5秒前
5秒前
yang完成签到,获得积分10
6秒前
6秒前
6秒前
漂泊完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
标致冬日发布了新的文献求助10
9秒前
彩色蚂蚁完成签到,获得积分10
9秒前
9秒前
oneko完成签到,获得积分10
9秒前
潇洒的蝴蝶完成签到,获得积分10
10秒前
rhrhn完成签到,获得积分10
10秒前
11秒前
星期一发布了新的文献求助10
11秒前
11秒前
gfsuen完成签到 ,获得积分10
11秒前
王献杰发布了新的文献求助10
11秒前
沫柠完成签到 ,获得积分10
12秒前
qmy完成签到,获得积分10
13秒前
嘘嘘完成签到,获得积分10
13秒前
莫漓漓发布了新的文献求助10
14秒前
14秒前
腿毛怪大叔完成签到,获得积分10
15秒前
孙文远完成签到,获得积分10
15秒前
说如果完成签到 ,获得积分10
16秒前
LaTeXer应助gloval采纳,获得50
16秒前
zhuxd完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
sunrain完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555210
求助须知:如何正确求助?哪些是违规求助? 4639922
关于积分的说明 14657559
捐赠科研通 4581878
什么是DOI,文献DOI怎么找? 2513000
邀请新用户注册赠送积分活动 1487691
关于科研通互助平台的介绍 1458726