Prediction of the gastric precancerous risk based on deep learning of multimodal medical images

深度学习 人工智能 计算机科学
作者
Changzheng Ma,Peng Zhang,Shiyu Du,Shao Li
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-4747833/v1
摘要

Abstract Effective warning diverse gastritis lesions, including precancerous lesions of gastric cancer (PLGC) and Non-PLGC, and progression risks, are pivotal for early prevention of gastric cancer. An attention-based model (Attention-GT) was constructed. It integrated multimodal features such as gastroscopic, tongue images, and clinicopathological indicators (Age, Gender, Hp) for the first time to assist in distinguishing diverse gastritis lesions and progression risks. A longitudinal cohort of 384 participants with gastritis (206 Non-PLGC and 178 PLGC) was constructed. These two baseline groups were subdivided into progressive (Pro) and Non-Pro groups, respectively, based on a mean follow-up of 3.3 years. The Attention-GT model exhibited excellent performance in distinguishing diverse gastritis lesions and progression risks. It was found that the AUC of Attention-GT in distinguishing PLGC was 0.83, significantly higher than that of clinicopathological indicators (AUC = 0.72, p < 0.01). Importantly, for the patients with baseline lesions as Non-PLGC, the AUC of Attention-GT in distinguishing the Pro group was 0.84, significantly higher than that of clinicopathological indicators (AUC = 0.67, p < 0.01), demonstrating the value of the fusion of gastroscopic and tongue images in predicting the progression risk of gastritis. Finally, morphological features related to diverse gastritis lesions and progression risk, respectively, were identified in both gastroscopic and tongue images through interpretability analysis. Collectively, our study has demonstrated the value of integrating multimodal data of medical images in assisting prediction of diverse gastritis lesions and progression risks, paving a new way for early gastric cancer risk prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六的飞起发布了新的文献求助30
1秒前
燕燕于飞发布了新的文献求助10
2秒前
DOG完成签到,获得积分10
2秒前
我没那么郝完成签到,获得积分10
2秒前
3秒前
Akim应助包远锋采纳,获得10
3秒前
fy完成签到,获得积分10
3秒前
乐乐应助孤独的匕采纳,获得10
3秒前
852应助水聿采纳,获得10
4秒前
梅子完成签到,获得积分10
5秒前
陈慧青关注了科研通微信公众号
5秒前
激动的大山完成签到,获得积分10
5秒前
裘文献完成签到 ,获得积分10
6秒前
JET_Li完成签到,获得积分10
7秒前
7秒前
1128发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
DE完成签到,获得积分10
10秒前
10秒前
singlestrand完成签到,获得积分10
10秒前
我是老大应助sdl采纳,获得10
11秒前
12秒前
IchenNG发布了新的文献求助10
13秒前
13秒前
13秒前
xxmol发布了新的文献求助10
13秒前
IchenNG发布了新的文献求助10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
14秒前
小二郎应助科研通管家采纳,获得30
14秒前
14秒前
852应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
IchenNG发布了新的文献求助10
14秒前
我学不进去了完成签到,获得积分10
14秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588