An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images

目标检测 人工智能 计算机科学 特征提取 航空影像 计算机视觉 对象(语法) 特征(语言学) 卷积神经网络 深度学习 模式识别(心理学) 图像(数学) 语言学 哲学
作者
Jiaquan Shen,Wangcheng Zhou,Ningzhong Liu,Han Sun,Deguang Li,Yongxin Zhang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (12): 24330-24342 被引量:12
标识
DOI:10.1109/tits.2022.3203715
摘要

Vehicle object detection in aerial scenes has important applications in both military and civilian fields. Recently, deep learning has shown clear advantages in object detection, and the detection performance has been continuously improved. However, these deep object detection algorithms rely on anchor-based approaches accompanied by complex convolutional operations. In this paper, we establish a lightweight aerial vehicle object detection algorithm based on the method of anchor-free. The anchor-free based object detection method effectively gets rid of the limitation of detection model capability by the size of fixed anchor box, which reduces the set of parameters and provides a more flexible solution space. In addition, the proposed lightweight object feature extraction network effectively reduces the computational cost of the model, while improving the feature extraction capability of small objects. Besides, we use channel stacking to improve the object feature extraction capability of the lightweight network, and introduce the attention mechanism in the detection model to improve the efficiency of resource utilization. We evaluate the proposed detection algorithm on both the public aerial dataset and our collected aerial dataset, and the results show that our algorithm has significant advantages over other detection algorithms in detection accuracy and efficiency. The proposed detection algorithm achieves 89.1% and 92.6% mAP on the Munich dataset and the created dataset, and the detection time for each image is 1.21s and 0.036s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
缥缈的万声完成签到,获得积分10
1秒前
fable发布了新的文献求助10
1秒前
pluto应助00采纳,获得10
2秒前
FashionBoy应助丫丫采纳,获得10
3秒前
。。。完成签到,获得积分10
5秒前
Aimee完成签到 ,获得积分10
6秒前
yyg发布了新的文献求助10
6秒前
6秒前
史小霜发布了新的文献求助10
7秒前
LJHUA完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
大大杰完成签到,获得积分10
12秒前
14秒前
hopen发布了新的文献求助10
15秒前
吕小沫发布了新的文献求助10
15秒前
17秒前
18秒前
fable发布了新的文献求助10
19秒前
後zgw完成签到,获得积分10
19秒前
20秒前
a136发布了新的文献求助10
21秒前
孤巷的猫完成签到,获得积分10
22秒前
白色梨花发布了新的文献求助10
22秒前
hopen完成签到,获得积分10
22秒前
hkxfg发布了新的文献求助10
24秒前
木木三发布了新的文献求助10
24秒前
zss完成签到 ,获得积分10
25秒前
笨笨千亦完成签到 ,获得积分10
25秒前
fable完成签到,获得积分10
27秒前
覃昔丰完成签到,获得积分10
28秒前
29秒前
29秒前
irvinzp完成签到,获得积分10
32秒前
123654完成签到 ,获得积分10
32秒前
香蕉觅云应助cxq采纳,获得10
32秒前
专注无施完成签到,获得积分10
33秒前
BLUK发布了新的文献求助10
34秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367840
关于积分的说明 10447987
捐赠科研通 3087298
什么是DOI,文献DOI怎么找? 1698552
邀请新用户注册赠送积分活动 816826
科研通“疑难数据库(出版商)”最低求助积分说明 769973