Chan–Vese aided fuzzy C‐means approach for whole breast and fibroglandular tissue segmentation: Preliminary application to real‐world breast MRI

分割 乳房磁振造影 人工智能 乳腺癌 计算机科学 像素 模式识别(心理学) 磁共振成像 乳腺摄影术 图像分割 计算机视觉 放射科 癌症 医学 内科学
作者
Syed Furqan Qadri,Chao Rong,Mubashir Ahmad,Jing Li,Salman Qadri,Syeda Shamaila Zareen,Zeyu Zhuang,Salabat Khan,Hongxiang Lin
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17660
摘要

Abstract Background Magnetic resonance imaging (MRI) is a highly sensitive modality for diagnosing breast cancer, providing an expanding range of clinical usages that are crucial for the care of women at elevated risk of breast cancer development. Segmentation of the whole breast and fibroglandular tissue (FGT), used to evaluate breast cancer risk, is often manually delineated by radiologists in clinical practice. In this paper, we aim to substitute handcrafted breast density segmentation and categorization. The traditional fuzzy C‐means (FCM) enable automatic segmentation but may be susceptible to heterogeneity or sparse FGT distribution in MRI. Purpose We develop a new automated technique for the segmentation of whole breast and FGT for the coronal‐view MRI. Methods We propose a Chan–Vese (CV) aided FCM segmentation approach for estimating the FGT in the whole breast using fat‐suppressed (FS) precontrast T1‐weighted breast MRI. We present a methodology pipeline comprising region‐of‐interest (ROI) extraction, nonparametric non‐uniform intensity normalization N4 algorithm‐based intensity inhomogeneity correction, skin‐layer extraction, and then whole breast and FGT segmentation. Our approach involves the FCM algorithm to assign membership degrees to pixels, distinguishing FGT regions from surrounding adipose tissues by assessing their probability of belonging to specific FGT regions, and subsequently, the region‐based active contour CV model leverages these membership degrees to direct contour evolution and enhance segmentation boundaries. The proposed method adeptly tackles common challenges in MRI, including blurred edges, low contrast, and intensity inhomogeneity, with efficiency. Results We evaluated our approach on the Duke Breast Cancer MRI data (DBCM‐data) and achieved good segmentation accuracy in terms of Dice similarity coefficient (DSC), Intersection‐over‐Union (IoU), and Sensitivity (SEN). Our method demonstrates significant accuracy, achieving a DSC (%) of 93.2 ± 3.3 and 84.1 ± 4.9, IoU (%) of 86.4 ± 3.5 and 73.2 ± 5.1, and SEN 87.3 ± 4.1 and 76.7 ± 4.1 for the segmentations of whole breast and FGT, respectively. Conclusion Our results demonstrated that the CV‐aided FCM approach significantly outperformed the existing methods and resulted in significantly more accurate whole breast and FGT segmentation in MRI data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等完成签到,获得积分20
刚刚
林业光魔发布了新的文献求助10
刚刚
生动越彬发布了新的文献求助10
1秒前
里冰完成签到,获得积分10
1秒前
1秒前
愉快天亦完成签到,获得积分10
4秒前
5秒前
sofia完成签到,获得积分20
6秒前
顾矜应助ZYANX采纳,获得10
7秒前
爵士黄瓜完成签到,获得积分10
8秒前
8秒前
8秒前
义气若冰完成签到,获得积分10
11秒前
Mp4发布了新的文献求助10
11秒前
流年发布了新的文献求助10
11秒前
13秒前
redred完成签到,获得积分20
13秒前
13秒前
Leo发布了新的文献求助10
15秒前
东余完成签到 ,获得积分10
16秒前
16秒前
VV完成签到 ,获得积分10
16秒前
桐桐应助mo采纳,获得10
17秒前
18秒前
19秒前
pangpang1992完成签到 ,获得积分10
19秒前
脑洞疼应助MSY采纳,获得20
21秒前
llyyz完成签到,获得积分10
21秒前
21秒前
Supreme完成签到 ,获得积分10
22秒前
鱼鱼发布了新的文献求助10
23秒前
左丘忻发布了新的文献求助10
24秒前
25秒前
Leo完成签到,获得积分10
25秒前
情怀应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Superiority of opioid free anesthesia with regional block over opioid anesthesia with regional block in the quality of recovery after retroperitoneiscopic renal surgery: a randomized controlled trial 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827015
求助须知:如何正确求助?哪些是违规求助? 3369264
关于积分的说明 10455235
捐赠科研通 3088870
什么是DOI,文献DOI怎么找? 1699525
邀请新用户注册赠送积分活动 817369
科研通“疑难数据库(出版商)”最低求助积分说明 770208