Automated weld defect segmentation from phased array ultrasonic data based on U-net architecture

相控阵 无损检测 分割 焊接 超声波检测 计算机科学 超声波传感器 相控阵超声 特征(语言学) 目视检查 人工智能 工程类 声学 机械工程 电信 医学 语言学 物理 放射科 哲学 天线(收音机)
作者
Sen Zhang,Yansong Zhang
出处
期刊:NDT & E international [Elsevier]
卷期号:146: 103165-103165 被引量:6
标识
DOI:10.1016/j.ndteint.2024.103165
摘要

Ultrasonic inspection is an environmentally friendly and easily deployable nondestructive testing (NDT) method widely used for defect detection of critical components in the industry. Phased array ultrasonic testing (PAUT) is one of the most advanced ultrasonic inspection methods, which gives volume inspection with increased resolution and coverage, improving inspection efficiency. Because of the weld structure echoes and the abstract nature of ultrasound images, especially facing meters and feature-changing weld joints with different thicknesses and welding methods in shipbuilding, the analysis of the PAUT weld data still relies on experienced rater random inspections. Rating complex welded products process is lengthy, costly, and prone to introduce human error during the manual rating but challenges automatic detection. To automatically segment defects in PAUT data, this work shows a combination of PAUT data of ship weld and three-dimensional (3D) U-net architecture. Combining PAUT imaging principles with welding and scan processes, a PAUT volumetric image dataset, including different thicknesses and scan angles, is established. We pioneered the application of 3D U-net architecture to segment defects in PAUT volume data. We found that U-net architecture with two encoding stages will perform better in segmenting defects in PAUT data, and region-based loss mainly improves the accuracy. Furthermore, a lightweight U-net architecture containing skip-connection and residual blocks is proposed with precision and efficiency improvement. The validation results show that the proposed U-net architecture offers a feasible solution to the problem of segmenting defects from PAUT data with a Dice accuracy of 90.9 %. Segmentation results help to locate and measure defects. This method makes locating and sizing defects in PAUT weld data possible within a fraction of a second.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助cyndi采纳,获得10
1秒前
高木完成签到,获得积分10
2秒前
tianfx3发布了新的文献求助10
2秒前
烟花应助Gaolongzhen采纳,获得10
3秒前
3秒前
科科完成签到 ,获得积分10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
5秒前
啦啦啦应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
TX发布了新的文献求助10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
cjs应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
春国完成签到,获得积分10
5秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
深情安青应助翻羽采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
sily完成签到,获得积分20
6秒前
852应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
ilihe应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
京城熬夜的荔枝完成签到,获得积分10
8秒前
紧张的含羞草完成签到,获得积分10
9秒前
9秒前
TX完成签到,获得积分10
10秒前
sily发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630124
求助须知:如何正确求助?哪些是违规求助? 4721680
关于积分的说明 14972609
捐赠科研通 4788275
什么是DOI,文献DOI怎么找? 2556795
邀请新用户注册赠送积分活动 1517819
关于科研通互助平台的介绍 1478383