DETF‐Net: A Network for Retinal Vessel Segmentation Utilizing Detailed Feature Enhancement and Dynamic Temporal Fusion

计算机科学 分割 人工智能 增采样 稳健性(进化) 模式识别(心理学) 棱锥(几何) 特征(语言学) 联营 图像(数学) 数学 哲学 基因 生物化学 语言学 化学 几何学
作者
Shaoli Li,Tielin Liang,Dejian Li,Changhong Jiang,Bin Liu,Luyao He
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (4)
标识
DOI:10.1002/ima.70132
摘要

ABSTRACT The segmentation of retinal vessel images is a pivotal step in diagnosing various ophthalmic and systemic diseases. Among deep learning techniques, UNet has been extensively utilized for its capability to deliver remarkable segmentation results. Nonetheless, significant challenges persist, particularly the loss of detail and spatial resolution caused by downsampling operations in convolutional and pooling layers. This drawback often results in subpar segmentation of small targets and intricate boundaries. Furthermore, achieving a balance between capturing global context and preserving local detail remains challenging, thereby limiting the segmentation performance on multi‐scale targets. To tackle these challenges, this study proposes the Detail‐Enhanced Temporal Fusion Network (DETF‐Net), which introduces two essential modules: (1) the Detail Feature Enhancement Module (DFEM), designed to strengthen the representation of complex boundary features through the integration of median pooling, spatial attention, and mixed depthwise convolution; and (2) the Dynamic Temporal Fusion Module (DTFM), which combines Multi‐scale Feature Extraction (MFE) and the Temporal Fusion Attention Mechanism (TFAM). The MFE module improves robustness across varying vessel sizes and shapes, while the TFAM dynamically adjusts feature importance and effectively captures subtle changes in vessel structure. The effectiveness of DETF‐Net was evaluated on three benchmark datasets: DRIVE, CHASE_DB1, and STARE. The proposed network achieved high accuracy scores of 0.9811, 0.9875, and 0.9876, respectively, alongside specificity values of 0.9811, 0.9870, and 0.9875. Comparative experiments demonstrated that DETF‐Net outperforms current state‐of‐the‐art models, showcasing its superior segmentation performance. This research presents innovative approaches to address existing limitations in retinal vessel image segmentation, thereby advancing diagnostic accuracy for ophthalmic diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
2秒前
charles发布了新的文献求助10
2秒前
3秒前
4秒前
XXXX发布了新的文献求助10
5秒前
隐形曼青应助七星茶采纳,获得30
6秒前
7秒前
li完成签到,获得积分10
8秒前
GZPFJMU完成签到,获得积分10
9秒前
体贴柜子完成签到 ,获得积分10
10秒前
Bystander完成签到 ,获得积分10
10秒前
温柔的中蓝完成签到,获得积分10
10秒前
11秒前
11秒前
AspenW发布了新的文献求助10
11秒前
Xie完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
Szw666完成签到,获得积分10
14秒前
yy完成签到,获得积分10
14秒前
曦耀发布了新的文献求助10
14秒前
14秒前
贪玩的秋柔应助danli采纳,获得10
15秒前
科研通AI6应助dd采纳,获得10
15秒前
慕青应助Tigher采纳,获得10
15秒前
田様应助显隐采纳,获得10
16秒前
16秒前
XXXX完成签到,获得积分10
17秒前
02发布了新的文献求助10
18秒前
19秒前
19秒前
科研通AI6应助juan采纳,获得10
20秒前
22秒前
阳光的荠发布了新的文献求助10
25秒前
追光者完成签到,获得积分10
25秒前
思源应助孝顺的班采纳,获得10
25秒前
张老涵发布了新的文献求助30
26秒前
27秒前
27秒前
28秒前
英俊的铭应助直率绮南采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759