Combined transcriptome and metabolome analysis of chicken follicles in Tengchong Snow Chicken follicle selection

代谢组 转录组 生物 毛囊 选择(遗传算法) 代谢组学 男科 动物 植物 生物信息学 遗传学 医学 基因 基因表达 计算机科学 物理 气象学 人工智能
作者
Yanli Du,Xiannian Zi,Kun Wang,Jinshan Ran,Hanyi Xiang,Lei Li,Yong Liu
出处
期刊:Animal Bioscience [Asian Australasian Association of Animal Production Societies]
卷期号:38 (7): 1316-1327
标识
DOI:10.5713/ab.24.0861
摘要

Objective: The development of pre-hierarchical follicles (PHFs), especially small yellow follicles (SYFs), directly affects the recruitment of dominant follicles and subsequently affects the egg-laying performance of chickens. The development of PHFs, especially SYFs, and their regulatory mechanisms remain unclear.Methods: Transcriptomic and metabolomic analyses were conducted on large white follicles (LWFs) and SYFs in chickens.Results: Transcriptome sequencing revealed 258 differentially expressed genes (DEGs) between SYFs and LWFs, with 172 genes upregulated and 86 downregulated. The DEGs were mapped to 17 Kyoto encyclopedia of genes and genomes (KEGG) pathways, including glutathione metabolism, ferroptosis, calcium signaling pathway, and neuroactive ligand– receptor interactions, among others. The metabolome analysis revealed 129 significant differential metabolites (DMs), comprising 36 upregulated and 93 downregulated metabolites. The DMs were associated with nine KEGG pathways, including glutathione metabolism, alpha-linolenic acid metabolism, and linoleic acid metabolism, etc. The combined transcriptional and metabolic analysis revealed significantly enriched pathways. Five KEGG pathways associated with follicular development were identified, including glutathione metabolism, ferroptosis, alpha-linolenic acid metabolism, linoleic acid metabolism, and pyrimidine metabolism.Conclusion: Glutathione metabolism may directly inhibit Ferroptosis, which can induce apoptosis of granulosa cells, thereby regulating SYFs development in chickens. These findings could serve as a reference for improving the egg-laying performance of Tengchong snow chickens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缥缈傥发布了新的文献求助10
2秒前
潇洒的云朵完成签到,获得积分20
2秒前
3秒前
3秒前
lx完成签到 ,获得积分10
3秒前
bkagyin应助安静的猴子采纳,获得10
3秒前
Fen3i完成签到,获得积分20
3秒前
伊凌发布了新的文献求助10
3秒前
4秒前
余长青完成签到 ,获得积分10
4秒前
4秒前
坦率的豪英完成签到,获得积分10
5秒前
5秒前
脑洞疼应助自由的尔蓉采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
咚咚发布了新的文献求助10
7秒前
吴彦祖发布了新的文献求助10
7秒前
在水一方应助curry123采纳,获得10
7秒前
ZZ完成签到 ,获得积分10
7秒前
Nature发布了新的文献求助10
8秒前
小火炉的家完成签到,获得积分10
8秒前
可爱的函函应助栗子采纳,获得10
9秒前
9秒前
10秒前
jieQYan发布了新的文献求助10
10秒前
10秒前
乐乐应助幸福哈密瓜采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
小小小完成签到,获得积分10
11秒前
12秒前
12秒前
吊袜带完成签到,获得积分10
13秒前
朴风完成签到,获得积分10
13秒前
13秒前
yeye完成签到,获得积分10
13秒前
小远发布了新的文献求助10
13秒前
byr完成签到 ,获得积分10
13秒前
curry123完成签到,获得积分20
14秒前
光亮的天川完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006