亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Goal-Oriented Feature Extraction: A Novel Approach to Enhance Data-Driven Surrogate Models

替代模型 替代数据 不确定度量化 计算机科学 特征(语言学) 人工智能 萃取(化学) 模式识别(心理学) 机器学习 物理 语言学 色谱法 量子力学 哲学 非线性系统 化学
作者
Xu Wang,Ruiqi Huang,Jiaqing Kou,Hui Tang,Weiwei Zhang
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:: 1-15
标识
DOI:10.2514/1.j065638
摘要

Surrogate models can replace the parametric full-order model (FOM) with an approximation model, which can significantly improve the efficiency of optimization and reduce the complexity of engineering systems. However, due to limitations in efficiency and accuracy, the applications of high-dimensional surrogate models remain challenging. In the present study, we propose a method to extract hidden features to simplify high-dimensional problems and improve the accuracy and robustness of surrogate models. We establish a goal-oriented feature extraction neural network using indirect supervised learning. Then, we constrain the distance between hidden features based on differences in the target output. The proposed hidden-feature learning method can significantly reduce the dimensionality and nonlinearity of the surrogate model to improve the modeling accuracy and generalization capability. To demonstrate the efficiency of our proposed ideas, we conduct numerical experiments on three popular surrogate models. The modeling results of typical high-dimensional mathematical cases and aerodynamic performance cases of RAE2822 airfoils and ONERA M6 wings show that goal-oriented feature extraction significantly improves the modeling accuracy. Goal-oriented feature extraction can also effectively reduce the error distribution of prediction cases and the differences in convergence and robustness caused by different data-driven surrogate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nojego完成签到,获得积分10
6秒前
16秒前
Criminology34应助科研通管家采纳,获得30
30秒前
Tumumu完成签到,获得积分0
36秒前
46秒前
48秒前
量子星尘发布了新的文献求助10
58秒前
xiaoqian完成签到,获得积分10
59秒前
含蓄文博完成签到 ,获得积分10
1分钟前
1分钟前
逐影发布了新的文献求助10
1分钟前
2分钟前
牛八先生完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
辉辉应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Guofa.完成签到 ,获得积分10
2分钟前
祈愿完成签到 ,获得积分10
3分钟前
所所应助TXZ06采纳,获得10
3分钟前
棠棠完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
TXZ06发布了新的文献求助10
3分钟前
3分钟前
wang完成签到 ,获得积分10
3分钟前
3分钟前
呆萌的不可完成签到,获得积分20
3分钟前
3分钟前
逐影完成签到,获得积分20
4分钟前
福星高照完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617034
求助须知:如何正确求助?哪些是违规求助? 4701438
关于积分的说明 14913668
捐赠科研通 4748734
什么是DOI,文献DOI怎么找? 2549278
邀请新用户注册赠送积分活动 1512335
关于科研通互助平台的介绍 1474080