Review of deep learning-based visual SLAM: types, approaches, and future work

计算机科学 人工智能 钥匙(锁) 独创性 数据科学 深度学习 工作(物理) 追踪 传感器融合 同时定位和映射 开发(拓扑) 管理科学 人机交互 开放式研究 工程类 重大挑战 目视进近
作者
Lebin Zhao,Tao Chen,Pei-Pei Yuan,Xiaoyang Li,Bin Chen
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
标识
DOI:10.1108/ir-04-2025-0137
摘要

Purpose This study aims to enhance the understanding of the current research status, challenges and potential development directions of deep learning (DL)-based visual simultaneous localization and mapping (VSLAM), thereby laying the groundwork for its applications in autonomous navigation, intelligent driving and other related domains. Design/methodology/approach This study comprehensively assesses recent advances and future challenges in DL-based VSLAM and visual-inertial SLAM (VISLAM). It first introduces existing review studies and clarifies its unique positioning. Subsequently, it thoroughly discusses the key contributions, strengths and limitations of the V(I)SLAM methods from three perspectives: supervised learning, unsupervised learning and hybrid approaches combining classical and learning-based methods. It also includes a targeted survey of research on semantic SLAM focusing on dynamic scenes. Finally, potential development directions and challenges are proposed. Findings Hybrid learning methods demonstrate certain advantages in dynamic or visually degraded environments, possessing significant development potential. Exploring novel network architectures and fusion with other sensors are also crucial directions for VSLAM advancement. However, these efforts require support from multimodal, explainable and robustness-focused datasets alongside unified evaluation metrics. Originality/value To the best of the authors’ knowledge, the originality of this work lies in its systematic summary and analysis of V(I)SLAM research based on a DL taxonomy, while methodically tracing the methodological evolution from classical static methods to dynamic semantic-aware paradigms. This paper further outlines future development trajectories, providing valuable references for researchers in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘鑫东发布了新的文献求助10
1秒前
2秒前
2秒前
wxyshare举报生动凡雁求助涉嫌违规
2秒前
jjn完成签到,获得积分10
3秒前
浮游应助落雨采纳,获得10
3秒前
4秒前
文静发布了新的文献求助10
4秒前
二水发布了新的文献求助10
5秒前
jjn发布了新的文献求助10
5秒前
dj完成签到,获得积分20
6秒前
why完成签到,获得积分10
6秒前
老衲完成签到,获得积分10
7秒前
今夕何夕完成签到,获得积分10
7秒前
qq2432927085发布了新的文献求助10
7秒前
Kakoala发布了新的文献求助10
7秒前
青春理想完成签到,获得积分10
8秒前
凶狠的白桃完成签到 ,获得积分10
8秒前
吕bao完成签到,获得积分10
8秒前
9秒前
mxq完成签到,获得积分10
10秒前
10秒前
小白完成签到 ,获得积分10
10秒前
Marciu33应助长情胡萝卜采纳,获得10
12秒前
吕bao发布了新的文献求助50
13秒前
14秒前
挽手说梦话完成签到,获得积分10
14秒前
WJ_Breakdown发布了新的文献求助10
15秒前
冰晨完成签到,获得积分10
15秒前
加菲丰丰应助甜不订用呀采纳,获得30
16秒前
等待的靖雁完成签到,获得积分10
16秒前
wanci应助科研式采纳,获得10
16秒前
拼搏绿柏发布了新的文献求助10
17秒前
17秒前
18秒前
动听听安完成签到,获得积分10
18秒前
18秒前
赘婿应助沉默的海露采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178396
求助须知:如何正确求助?哪些是违规求助? 4366671
关于积分的说明 13595765
捐赠科研通 4217004
什么是DOI,文献DOI怎么找? 2312780
邀请新用户注册赠送积分活动 1311643
关于科研通互助平台的介绍 1259958