Revealing spatio-temporal evolution of urban visual environments with street view imagery

感知 镜像 计算机科学 聚类分析 城市规划 地理 人工智能 心理学 沟通 生态学 生物 神经科学
作者
Xiucheng Liang,Tianhong Zhao,Filip Biljecki
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:237: 104802-104802 被引量:68
标识
DOI:10.1016/j.landurbplan.2023.104802
摘要

The visual landscape plays a pivotal role in urban planning and healthy cities. Recent studies of visual evaluation focus on either objective or subjective approach, while describing the visual character holistically and monitor its evolution remains challenging. This study introduces an embedding-driven clustering approach that integrates both physical and perceptual attributes to infer the spatial structure of the visual environment, and investigates its spatio-temporal evolution. Singapore, a highly urbanised yet green city, is selected as a case study. Firstly, a visual feature matrix is derived from street view imagery (SVI). Then, a graph neural network is constructed based on road connections to encode visual features and spatial dependency leading to a clustering algorithm that is used to discover the underlying characteristics of the visual environment. The implementation characterises streetscapes of the city-state into six types of clusters. Finally, taking advantage of historical SVI, a longitudinal analysis reveals how visual clusters have evolved in the past decade. Among them, one of the clusters represents high-density visual experience, affirming the work as such streetscape dominates the central business district and it is evolving elsewhere, mirroring the expansion of new towns. In turn, another identified cluster, indicating sparse landscapes, decreased, while areas that are considered to be in the most visually pleasant cluster, increased. For the first time, this study demonstrates a novel method to understand the urban visual structure and analyse its spatio-temporal evolution, which could support future planning decision-making and urban landscape betterment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助Nancy采纳,获得10
1秒前
潇洒的布偶完成签到,获得积分10
1秒前
ss应助求解限采纳,获得50
3秒前
4秒前
Orange应助ray采纳,获得10
6秒前
Raymond发布了新的文献求助10
6秒前
Ywffffff完成签到 ,获得积分10
7秒前
haojie完成签到 ,获得积分10
7秒前
万能图书馆应助wyx采纳,获得10
10秒前
vampirell完成签到,获得积分0
11秒前
12秒前
xzy998发布了新的文献求助10
16秒前
17秒前
18秒前
大大卷w完成签到 ,获得积分10
21秒前
刺桐花下完成签到 ,获得积分10
21秒前
sisi完成签到 ,获得积分10
23秒前
霍师傅发布了新的文献求助30
23秒前
时尚的开山完成签到,获得积分20
23秒前
高山流水完成签到,获得积分10
31秒前
单单来迟完成签到,获得积分10
32秒前
上官若男应助霍师傅采纳,获得10
34秒前
36秒前
xzy998发布了新的文献求助10
37秒前
科研通AI5应助牙牙采纳,获得10
37秒前
37秒前
38秒前
123456完成签到 ,获得积分10
38秒前
40秒前
ycwfs完成签到 ,获得积分10
40秒前
Ljc发布了新的文献求助30
42秒前
FZU_ChyL完成签到 ,获得积分10
42秒前
HotnessK完成签到,获得积分10
43秒前
传奇3应助清欢采纳,获得10
44秒前
陈影完成签到,获得积分10
45秒前
chiaoyin999应助科研菜鸡采纳,获得10
48秒前
qiao完成签到,获得积分10
49秒前
49秒前
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778731
求助须知:如何正确求助?哪些是违规求助? 3324277
关于积分的说明 10217710
捐赠科研通 3039405
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798531
科研通“疑难数据库(出版商)”最低求助积分说明 758401