Less Is More: A Small-Scale Learning Particle Swarm Optimization for Large-Scale Optimization

作者
Shuai Liu,Zijia Wang,Zheng Kou,Zhi‐Hui Zhan,Sam Kwong,Jun Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:56 (1): 523-536 被引量:1
标识
DOI:10.1109/tcyb.2025.3604822
摘要

Large-scale optimization problem (LSOP) is an essential research topic in the field of evolutionary computation community. Many large-scale optimization algorithms often maintain a large population for diversity enhancement. However, updating such a large population consumes a significant number of fitness evaluations (FEs), which may lead to the insufficient evolution of the population. In light of this, this article proposes a small-scale learning particle swarm optimization (SSLPSO) for solving LSOPs. In the small-scale learning mechanism, only up to two representative individuals are updated in every generation to effectively save FEs and prolong the evolutionary generations, so as to refine the solution accuracy. Specifically, we first design a representative individual selection (RIS) strategy to select the convergence representative individual and the diversity representative individual for updating. Then, we develop a representative individual learning (RIL) strategy, which includes a convergence learning method and a diversity learning method for the convergence representative individual and the diversity representative individual, respectively. Meanwhile, we further propose an adaptive strategy adjustment (ASA) method based on evolutionary state assessment to determine whether the representative individuals should be updated, further achieving the adaptive adjustment of the evolutionary behavior in the population. Experimental results on the commonly used large-scale test suites, IEEE CEC2010 and IEEE CEC2013, show that the performance of SSLPSO is significantly better than, or at least comparable to other state-of-the-art large-scale optimization algorithms, including the winners of large-scale competitions. Finally, the application of SSLPSO to a large-scale constrained water distribution network optimization problem further demonstrates its real-world applicability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
留胡子的红酒完成签到 ,获得积分10
刚刚
ying发布了新的文献求助10
刚刚
刚刚
小蕾发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
rrr完成签到,获得积分10
2秒前
3秒前
快乐的凡霜完成签到,获得积分10
4秒前
4秒前
4秒前
SoulG1RLzzZ完成签到,获得积分10
5秒前
5秒前
mjy123完成签到,获得积分10
5秒前
7秒前
7秒前
8秒前
天天快乐应助nyq采纳,获得10
8秒前
ZHAOZHAO发布了新的文献求助10
8秒前
玉林完成签到,获得积分10
9秒前
WYXXXX完成签到,获得积分10
9秒前
王敏娜完成签到 ,获得积分10
9秒前
zheng_chen发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
可爱的函函应助陈飞鹏采纳,获得10
11秒前
13秒前
13秒前
13秒前
温暖砖头完成签到,获得积分10
14秒前
一两银子完成签到,获得积分20
14秒前
李爱国应助读书的时候采纳,获得10
16秒前
17秒前
硬币完成签到,获得积分10
17秒前
18秒前
18秒前
Garra9822完成签到 ,获得积分10
18秒前
123by发布了新的文献求助10
19秒前
南楼小阁主完成签到,获得积分10
20秒前
YY完成签到 ,获得积分10
20秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700468
求助须知:如何正确求助?哪些是违规求助? 5138358
关于积分的说明 15230590
捐赠科研通 4855529
什么是DOI,文献DOI怎么找? 2605365
邀请新用户注册赠送积分活动 1556781
关于科研通互助平台的介绍 1514791