硫酸盐
灵活性(工程)
多元统计
金属有机骨架
材料科学
化学工程
环境科学
化学
计算机科学
吸附
冶金
工程类
物理化学
数学
统计
机器学习
作者
Hanze Wang,Weixiang Zuo,Zhe Wang,Wentao Jiang,Shan Liu,Tengwu Zeng,Lei Wei,Zheng Yin,Ming‐Hua Zeng,Yue‐Biao Zhang
标识
DOI:10.1002/anie.202512425
摘要
Abstract A series of sulfate‐pillared metal azolate frameworks (MAFs) were synthesized via a multivariate (MTV) strategy to systematically tune framework flexibility and gas separation performance. The monotonic sulfate‐pillared MAF, Zn 2 (daTz) 2 SO 4 (where daTz = 3,5‐diamino‐1,2,4‐triazolate), exhibits pronounced structural dynamics upon adaptive guest inclusions, driven by triazolate linker rotation and reversible Zn─O bonds rearrangement, enabling dynamic pore modulation for efficient CO 2 , C 2 H 4 , and C 2 H 6 uptakes. Incorporation of an asymmetric, non‐amino linker effectively suppresses framework flexibility by reducing intraframework hydrogen bonding, resulting in a locked structure with enhanced selectivity for CO 2 over light hydrocarbons. Gas adsorption and breakthrough experiments demonstrate that the MTV approach enabled structural control, leading to exceptional CO 2 /C 2 H 6 and CO 2 /C 2 H 4 separation performance. Notably, Zn 2 (mTz) 0.74 (daTz) 1.26 SO 4 (where mTz = 3‐methyl‐1,2,4‐triazolate) achieves 17‐fold enhancement in ethylene purification. Comprehensive structural analyses and interaction energy calculations reveal the molecular basis of flexibility regulation, offering valuable insights for designing next‐generation porous materials for selective gas separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI