已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSA: Mamba Semantic Alignment Networks for Remote Sensing Change Detection

计算机科学 遥感 地质学
作者
Zhenyang Huang,Peng Duan,Genji Yuan,Jinjiang Li
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:18: 10625-10639 被引量:2
标识
DOI:10.1109/jstars.2025.3556723
摘要

With the rapid advancement of Earth observation technologies, remote sensing change detection (CD) has become a crucial method for monitoring surface changes. It is widely used in areas, such as urban expansion, disaster assessment, and resource detection. Current deep learning-based CD methods typically extract feature information from remote sensing images through downsampling and then aggregate early features with deeper ones during upsampling. However, directly aggregating these features without addressing spatial misalignment due to resolution changes can compromise the accuracy of change detection. In addition, there is a need to address the challenge of inadequate long-range dependency modeling in image processing. To tackle these challenges, this article proposes Mamba semantic alignment networks (MSA) for remote sensing CD. MSA introduces the semantic offset correction block, which corrects spatial misalignment during feature aggregation by incorporating a learnable semantic offset map, thereby reducing classification errors caused by feature mismatches. Furthermore, MSA incorporates the global dependency enhancement block, leveraging the Mamba architecture and the lossless downsampling and reversibility of wavelet transforms to significantly enhance global feature modeling. We evaluated MSA on three datasets, and the experimental results demonstrate that MSA outperforms mainstream methods across all three datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eclo完成签到 ,获得积分10
1秒前
NexusExplorer应助阿不思采纳,获得10
2秒前
yyzhou应助luxiaoyu采纳,获得10
2秒前
在水一方应助nonory采纳,获得10
3秒前
nk发布了新的文献求助10
6秒前
充电宝应助战战采纳,获得10
8秒前
付晓龙完成签到,获得积分10
8秒前
luxiaoyu完成签到,获得积分10
10秒前
11秒前
Owen应助按照国际惯例采纳,获得50
12秒前
心机之蛙完成签到 ,获得积分10
13秒前
可靠F完成签到,获得积分10
14秒前
hhoho发布了新的文献求助20
15秒前
任匠发布了新的文献求助10
15秒前
季瑶发布了新的文献求助10
15秒前
无花果应助wunai012321采纳,获得10
15秒前
陈坤完成签到,获得积分10
17秒前
丘比特应助khx采纳,获得10
17秒前
19秒前
李健应助nk采纳,获得10
20秒前
xia发布了新的文献求助10
22秒前
22秒前
任匠完成签到,获得积分10
22秒前
yolo3o发布了新的文献求助10
22秒前
科研通AI6应助娄心昊采纳,获得10
23秒前
GingerF应助按照国际惯例采纳,获得50
23秒前
24秒前
Troy完成签到 ,获得积分10
25秒前
福明明给福明明的求助进行了留言
25秒前
星期一发布了新的文献求助10
28秒前
obaica发布了新的文献求助10
29秒前
30秒前
善学以致用应助zhangyk采纳,获得10
30秒前
31秒前
阿楚完成签到,获得积分10
32秒前
32秒前
32秒前
wunai012321完成签到,获得积分10
33秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330