Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning

成对比较 计算机科学 超图 归纳逻辑编程 理论计算机科学 推论 归纳推理 嵌入 子图同构问题 链接(几何体) 图形 关系数据库 人工智能 自然语言处理 数据挖掘 数学 离散数学 计算机网络
作者
Gongzhu Yin,Hongli Zhang,Yuchen Yang,Yi Luo
标识
DOI:10.1145/3690624.3709195
摘要

N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nazi完成签到,获得积分10
1秒前
今日发布了新的文献求助10
2秒前
KinKrit完成签到 ,获得积分10
2秒前
Y123完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
彭于晏应助xxx采纳,获得10
6秒前
酷酷学发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
西红柿发布了新的文献求助10
8秒前
朴实以松完成签到,获得积分10
9秒前
162发布了新的文献求助10
9秒前
10秒前
笑一笑发布了新的文献求助30
11秒前
窝的小卷毛完成签到,获得积分10
12秒前
充电宝应助kjh采纳,获得10
12秒前
12秒前
苏苏苏发布了新的文献求助10
13秒前
wanzhitao发布了新的文献求助10
14秒前
AI_S完成签到,获得积分10
14秒前
纠纠完成签到,获得积分10
15秒前
xxx发布了新的文献求助10
17秒前
162完成签到,获得积分10
19秒前
大模型应助lanxinge采纳,获得10
20秒前
20秒前
20秒前
细胞发布了新的文献求助10
21秒前
bible完成签到,获得积分10
21秒前
21秒前
Antonio发布了新的文献求助10
22秒前
李7完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
gaojie完成签到,获得积分10
24秒前
25秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817273
求助须知:如何正确求助?哪些是违规求助? 3360699
关于积分的说明 10408765
捐赠科研通 3078773
什么是DOI,文献DOI怎么找? 1690784
邀请新用户注册赠送积分活动 814097
科研通“疑难数据库(出版商)”最低求助积分说明 768050