The AI-driven Drug Design (AIDD) platform: an interactive multi-parameter optimization system integrating molecular evolution with physiologically based pharmacokinetic simulations

计算机科学 工作流程 药品 生物信息学 药物开发 过程(计算) 机器学习 计算生物学 人工智能 药理学 生物 生物化学 数据库 基因 操作系统
作者
Jeremy O. Jones,Robert D. Clark,Michael S. Lawless,D. W. Miller,Marvin Waldman
出处
期刊:Journal of Computer-aided Molecular Design [Springer Science+Business Media]
卷期号:38 (1) 被引量:9
标识
DOI:10.1007/s10822-024-00552-6
摘要

Computer-aided drug design has advanced rapidly in recent years, and multiple instances of in silico designed molecules advancing to the clinic have demonstrated the contribution of this field to medicine. Properly designed and implemented platforms can drastically reduce drug development timelines and costs. While such efforts were initially focused primarily on target affinity/activity, it is now appreciated that other parameters are equally important in the successful development of a drug and its progression to the clinic, including pharmacokinetic properties as well as absorption, distribution, metabolic, excretion and toxicological (ADMET) properties. In the last decade, several programs have been developed that incorporate these properties into the drug design and optimization process and to varying degrees, allowing for multi-parameter optimization. Here, we introduce the Artificial Intelligence-driven Drug Design (AIDD) platform, which automates the drug design process by integrating high-throughput physiologically-based pharmacokinetic simulations (powered by GastroPlus) and ADMET predictions (powered by ADMET Predictor) with an advanced evolutionary algorithm that is quite different than current generative models. AIDD uses these and other estimates in iteratively performing multi-objective optimizations to produce novel molecules that are active and lead-like. Here we describe the AIDD workflow and details of the methodologies involved therein. We use a dataset of triazolopyrimidine inhibitors of the dihydroorotate dehydrogenase from Plasmodium falciparum to illustrate how AIDD generates novel sets of molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习发布了新的文献求助30
1秒前
CodeCraft应助star12138采纳,获得10
2秒前
淡定的天空完成签到,获得积分10
3秒前
xiaoblue完成签到,获得积分10
6秒前
科研狗完成签到 ,获得积分10
8秒前
12秒前
14秒前
超级大猩猩完成签到,获得积分10
14秒前
8888拉完成签到,获得积分10
16秒前
科研通AI5应助任康采纳,获得10
17秒前
深情怀亦发布了新的文献求助10
18秒前
东东发布了新的文献求助10
18秒前
khh完成签到 ,获得积分10
18秒前
学习使我快乐完成签到 ,获得积分10
18秒前
Zz完成签到 ,获得积分10
24秒前
亵渎完成签到,获得积分10
26秒前
26秒前
任康完成签到,获得积分20
26秒前
谦让的凝阳完成签到,获得积分10
29秒前
abcdefg发布了新的文献求助10
29秒前
30秒前
大模型应助111采纳,获得10
31秒前
科研通AI5应助稀饭采纳,获得10
32秒前
ovo完成签到,获得积分10
32秒前
WangY1263发布了新的文献求助10
35秒前
阿毛呢发布了新的文献求助30
35秒前
科研通AI5应助骉骉采纳,获得10
39秒前
灵巧的十八完成签到 ,获得积分10
39秒前
TangWL完成签到 ,获得积分10
40秒前
saxg_hu完成签到,获得积分10
40秒前
莎莎薯条完成签到,获得积分10
41秒前
完美世界应助nhh采纳,获得10
41秒前
humble完成签到 ,获得积分10
42秒前
WSZXQ完成签到,获得积分10
42秒前
42秒前
羊白玉完成签到 ,获得积分10
46秒前
WangY1263完成签到,获得积分10
46秒前
GG发布了新的文献求助10
47秒前
50秒前
打打应助科研通管家采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777858
求助须知:如何正确求助?哪些是违规求助? 3323378
关于积分的说明 10214206
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798171
科研通“疑难数据库(出版商)”最低求助积分说明 758290