YOLO-Adaptor: A Fast Adaptive One-Stage Detector for Non-Aligned Visible-Infrared Object Detection

红外线的 探测器 阶段(地层学) 目标检测 计算机科学 计算机视觉 人工智能 光学 物理 电信 模式识别(心理学) 生物 古生物学
作者
Haolong Fu,Hanhao Liu,Jin Yuan,Xuan He,Jiacheng Lin,Zhiyong Li
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tiv.2024.3393015
摘要

Visible-infrared object detection has attracted increasing attention recently due to its superior performance and cost-efficiency. Most existing methods focus on the detection of strictly-aligned data, significantly limiting its practical applications. Although several researchers have attempted to explore weakly-aligned visible-infrared object detection, they are limited to small translational deviations and suffer from a low detection speed. This paper first explores non-aligned visibleinfrared object detection with complex deviations in translation, scaling, and rotation, and proposes a fast one-stage detector YOLO-Adaptor, which introduces a lightweight multi-modal adaptor to simultaneously predict alignment parameters and confidence weights between modalities. The adaptor adopts a feature-level alignment during the feature extraction process, ensuring high alignment efficiency. Moreover, we introduce a feature contrastive learning loss to guide the alignment learning of the adaptor, aiming to reduce the representation gap between the two modalities in hyperbolic space to implement feature spatial and distributional consistency. Extensive experiments are conducted on three datasets, including one weakly-aligned and two non-aligned datasets, and the experimental results demonstrate that YOLO-Adaptor could achieve significant performance improvements in terms of speed and accuracy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
litpand完成签到,获得积分0
1秒前
1秒前
2秒前
3秒前
Linda完成签到,获得积分10
4秒前
5秒前
李怀璟发布了新的文献求助10
5秒前
愿好发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助20
6秒前
7秒前
镓氧锌钇铀应助mas采纳,获得10
7秒前
8秒前
misa发布了新的文献求助10
8秒前
Nzoth发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
紫津发布了新的文献求助10
12秒前
平常的小馒头应助yy采纳,获得10
13秒前
逍遥发布了新的文献求助10
14秒前
15秒前
王博林发布了新的文献求助50
16秒前
Nzoth完成签到,获得积分10
16秒前
嗯哼发布了新的文献求助10
17秒前
镓氧锌钇铀应助mas采纳,获得10
17秒前
17秒前
20秒前
21秒前
Binbin完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
超帅寒凡发布了新的文献求助10
23秒前
shuwei完成签到,获得积分10
24秒前
情怀应助刀锋采纳,获得10
24秒前
hehsk发布了新的文献求助10
24秒前
24秒前
传奇3应助ssy采纳,获得10
24秒前
奋斗的萝发布了新的文献求助100
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247650
求助须知:如何正确求助?哪些是违规求助? 3780662
关于积分的说明 11870181
捐赠科研通 3433874
什么是DOI,文献DOI怎么找? 1884693
邀请新用户注册赠送积分活动 936272
科研通“疑难数据库(出版商)”最低求助积分说明 842161