已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of hardness or yield strength for ODS steels based on machine learning

材料科学 高分辨率透射电子显微镜 透射电子显微镜 扫描电子显微镜 产量(工程) 氧化物 微观结构 冶金 色散(光学) 粒度 复合材料 纳米技术 物理 光学
作者
Tian-Xing Yang,Peng Dou
出处
期刊:Materials Characterization [Elsevier BV]
卷期号:211: 113886-113886 被引量:3
标识
DOI:10.1016/j.matchar.2024.113886
摘要

Oxide dispersion strengthened (ODS) steel has emerged as a highly promising cladding materials for Generation IV nuclear reactors due to its exceptional mechanical properties and remarkable resistance to irradiation, corrosion, and oxidation. In this study, the matrix grain morphology, dispersion morphology, and phases of oxide particles in eight ODS steels were studied by scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The effect of grain refinement in Al-free ODS steels is better than that in Al-added and Zr-added ODS steels. In Al-added ODS steels, the co-addition of Ti and Zr elements could improve the dispersion morphology of nano-sized particles. In this study, more than 500 data from ODS steels were collected, and 420 items were used for machine learning (ML) modeling. Several ML models were developed to evaluate the predictive performance of the dataset of hardness and yield strength. The results indicate that two XGBoost (XGB) models, which show the lowest mean absolute error (MAE) values and the highest R2 values among the six ML models, have the best predictive performance. Therefore, the two XGB models were selected to predict the hardness and yield strength of ODS steels. The independent variables included chemical compositions, test conditions, and microstructural descriptors. A high linear correlation exists between Zr and Ti. Regarding chemical composition, Y2O3 has the most significant effect on hardness and yield strength. The predicted values of hardness & yield strength are in good agreement with the corresponding experimental values. The two generalized ML models show the potential for accurate prediction of hardness & yield strength in ODS steels, thereby providing a valuable theoretical framework for the design and optimization of novel ODS steels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
NexusExplorer应助橘猫123456采纳,获得10
5秒前
ftl完成签到 ,获得积分10
6秒前
科研通AI6应助最爱吃火锅采纳,获得10
8秒前
小二郎应助勤奋橘子采纳,获得10
9秒前
wanci应助dcc321采纳,获得10
11秒前
隐形曼青应助pinecone采纳,获得10
12秒前
12秒前
13秒前
XY完成签到,获得积分10
15秒前
ding应助hanzhua132采纳,获得10
17秒前
17秒前
17秒前
DondeDu完成签到 ,获得积分10
17秒前
sterlingwang发布了新的文献求助10
17秒前
Gy完成签到 ,获得积分10
20秒前
20秒前
小蘑菇应助欧尼酱采纳,获得10
22秒前
12完成签到,获得积分10
23秒前
24秒前
isvv发布了新的文献求助10
25秒前
浮游应助美满的小熊猫采纳,获得10
25秒前
香蕉觅云应助KK采纳,获得10
27秒前
HE完成签到,获得积分10
27秒前
学子发布了新的文献求助10
28秒前
啦啦啦啦完成签到 ,获得积分10
29秒前
isvv完成签到,获得积分10
32秒前
不配.应助DondeDu采纳,获得60
36秒前
40秒前
40秒前
41秒前
勤恳凝蕊发布了新的文献求助10
42秒前
乐天林发布了新的文献求助10
43秒前
机灵的忆梅完成签到 ,获得积分10
43秒前
44秒前
45秒前
45秒前
45秒前
霜降发布了新的文献求助30
48秒前
啦啦鱼完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029673
求助须知:如何正确求助?哪些是违规求助? 4265121
关于积分的说明 13296676
捐赠科研通 4073621
什么是DOI,文献DOI怎么找? 2228036
邀请新用户注册赠送积分活动 1236660
关于科研通互助平台的介绍 1160897