MSRF-Net: Multiscale Receptive Field Network for Building Detection From Remote Sensing Images

计算机科学 特征提取 人工智能 卷积神经网络 模式识别(心理学) 编码器 感受野 特征(语言学) 领域(数学) 背景(考古学) 计算机视觉 数学 地质学 语言学 操作系统 哲学 古生物学 纯数学
作者
Yuanhao Zhao,Genyun Sun,Li Zhang,Aizhu Zhang,Xiuping Jia,Zheng Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2023.3282926
摘要

Extracting buildings from remote sensing images plays an important role in urban development planning, disaster assessment and mapping. Convolutional neural network (CNN) has been widely applied to building extraction because of its powerful deep semantic feature extraction ability. However, existing CNN-based building extraction methods are difficult to accurately extract multiscale buildings with accurate edges because of the limitation of feature receptive fields and the loss of spatial detail information. For the above problems, this paper proposes a multiscale receptive field network (MSRF-Net) to accurately extract multiscale buildings from remote sensing images. MSRF-Net includes multiscale receptive field feature encoder (MRFF-Encoder) and multipath decoder. In the MRFF-Encoder, a multiscale attentional down (MSAD) module and asymmetric residual inception (ARI) module are proposed to capture multiscale receptive field features. In the multipath decoder, convolutions with different kernel size and dilation are used in three parallel paths to learn localization-preserved multiscale features with multiscale receptive field. What's more, the features of different branches and MRFF-Encoder are fused by the proposed feature combination module, which contribute to capture context information of multiscale receptive field while recovering the resolution of feature space. The experimental results show that compared with the latest MAP-Net, MSRF-Net has achieved F1 score growth of 1.14%, 0.42%, 1.11% and IoU score growth of 1.68%, 0.76% and 1.64% respectively on Massachusetts data set, WHU data set and the Typical Cities Building data set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
默默的皮牙子应助xibaluma采纳,获得10
刚刚
刚刚
不懈奋进应助Bazinga采纳,获得30
刚刚
忧虑的咖啡豆完成签到,获得积分10
1秒前
楼一笑发布了新的文献求助10
1秒前
陆小齐完成签到,获得积分10
1秒前
隐形曼青应助lulu采纳,获得10
1秒前
小懒虫发布了新的文献求助10
2秒前
xuuuuu发布了新的文献求助10
2秒前
搜集达人应助tffyhgfjhy采纳,获得10
3秒前
曲沛萍发布了新的文献求助10
3秒前
3秒前
大模型应助mm采纳,获得10
3秒前
3秒前
3秒前
jingwen发布了新的文献求助10
3秒前
小马甲应助Gemh采纳,获得10
3秒前
4秒前
阮楷瑞发布了新的文献求助10
4秒前
英勇的鱼完成签到,获得积分20
5秒前
xx完成签到,获得积分10
5秒前
研友_85lKeZ发布了新的文献求助50
6秒前
liu123456完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
等风、也等你完成签到,获得积分10
7秒前
一个小短发完成签到,获得积分10
8秒前
8秒前
gumausi发布了新的文献求助10
8秒前
Tina完成签到,获得积分10
9秒前
lili完成签到,获得积分20
9秒前
zhuo发布了新的文献求助10
10秒前
10秒前
yiding发布了新的文献求助10
10秒前
活泼的不可完成签到,获得积分10
11秒前
11秒前
乖拉完成签到,获得积分10
12秒前
yuer完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786497
求助须知:如何正确求助?哪些是违规求助? 3332246
关于积分的说明 10254811
捐赠科研通 3047627
什么是DOI,文献DOI怎么找? 1672635
邀请新用户注册赠送积分活动 801445
科研通“疑难数据库(出版商)”最低求助积分说明 760204