Satellite-based drought monitoring using optimal indices for diverse climates and land types

蒸散量 环境科学 均方误差 降水 地形地貌 水循环 卫星 土地覆盖 水文学(农业) 气象学 土地利用 统计 数学 地理 地质学 生态学 地图学 生物 工程类 航空航天工程 岩土工程
作者
Maedeh Behifar,A.A. Kakroodi,Majid Kiavarz,Azizi Ghasem
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:76: 102143-102143 被引量:12
标识
DOI:10.1016/j.ecoinf.2023.102143
摘要

Drought is considered one of the most destructive natural disasters, and many areas are experiencing water scarcity. Expanding knowledge of this phenomenon is a prerequisite for developing drought monitoring and forecasting tools. To this end, various indices are available for studying drought in different environments using field and remote sensing data. This study applies satellite-based indices for monitoring drought in different land cover, landforms, and climate classes. The in-situ standardized precipitation index (SPI) with a three-month time scale was applied to evaluate the performance of 13 remote sensing indices and parameters. The results indicated that the indices based on actual evapotranspiration, precipitation, and soil moisture, respectively, performed best in different parts of the basin. After additional analysis, the evapotranspiration condition index (ETCI), derived from actual evapotranspiration data, was deemed the optimal metric. The accuracy assessment results indicated that the correlation between the ETCI and the three-month SPI was 0.655, which was slightly higher than the actual evapotranspiration (0.637), and that the root-mean-squared error (RMSE) decreased from 0.71 to 0.65, indicating the best performance among the indices evaluated in the study area. Moreover, the drought map of the region was developed using the optimal indices, including the ETCI, the precipitation condition index (PCI), and the random forest (RF) algorithm. According to the results of the accuracy evaluation, the correlation between the estimated model and the observed three-month SPI values in 2017 was 0.72, with an RMSE of 0.60.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昀宇完成签到 ,获得积分10
刚刚
刚刚
勤恳冰淇淋完成签到 ,获得积分10
刚刚
彭嘉嘉完成签到,获得积分10
刚刚
张聪完成签到,获得积分10
2秒前
2秒前
探探完成签到,获得积分20
2秒前
乐乐应助v啦啦啦啦采纳,获得10
3秒前
马楼完成签到,获得积分10
4秒前
4秒前
4秒前
ty发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
Leisure_Lee完成签到,获得积分10
8秒前
something完成签到,获得积分10
9秒前
探探发布了新的文献求助10
9秒前
木鱼完成签到,获得积分20
9秒前
Dr_Feng发布了新的文献求助20
10秒前
11秒前
祝君早日毕业完成签到,获得积分10
11秒前
坚强的访蕊完成签到,获得积分10
12秒前
周师辰完成签到,获得积分10
13秒前
zasideler完成签到,获得积分10
14秒前
小小完成签到,获得积分10
15秒前
15秒前
ha完成签到,获得积分20
15秒前
16秒前
周师辰发布了新的文献求助10
16秒前
茉莉青提完成签到 ,获得积分10
18秒前
sumugeng完成签到,获得积分10
19秒前
玩命的十三完成签到 ,获得积分10
19秒前
19秒前
dajiejie完成签到 ,获得积分10
19秒前
西卡诺完成签到,获得积分10
22秒前
yuan发布了新的文献求助10
22秒前
23秒前
PEI完成签到,获得积分10
23秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782905
求助须知:如何正确求助?哪些是违规求助? 3328212
关于积分的说明 10235338
捐赠科研通 3043308
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799719
科研通“疑难数据库(出版商)”最低求助积分说明 759033