Auto-Diagnosis of Time-of-Flight for Ultrasonic Signal Based on Defect Peaks Tracking Model

计算机科学 超声波传感器 信号(编程语言) 人工智能 管道(软件) 信号处理 无损检测 希尔伯特-黄变换 Echo(通信协议) 计算机视觉 模式识别(心理学) 声学 雷达 医学 计算机网络 电信 滤波器(信号处理) 物理 放射科 程序设计语言
作者
Fan Yang,Dongliang Shi,Long-Yin Lo,Qian Mao,J. Zhang,Kwok Ho Lam
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (3): 599-599 被引量:17
标识
DOI:10.3390/rs15030599
摘要

With the popularization of humans working in tandem with robots and artificial intelligence (AI) by Industry 5.0, ultrasonic non-destructive testing (NDT)) technology has been increasingly used in quality inspections in the industry. As a crucial part of handling ultrasonic testing results–signal processing, the current approach focuses on professional training to perform signal discrimination but automatic and intelligent signal optimization and estimation lack systematic research. Though the automated and intelligent framework for ultrasonic echo signal processing has already exhibited essential research significance for diagnosing defect locations, the real-time applicability of the algorithm for the time-of-flight (ToF) estimation is rarely considered, which is a very important indicator for intelligent detection. This paper conducts a systematic comparison among different ToF algorithms for the first time and presents the auto-diagnosis of the ToF approach based on the Defect Peaks Tracking Model (DPTM). The proposed DPTM is used for ultrasonic echo signal processing and recognition for the first time. The DPTM using the Hilbert transform was verified to locate the defect with the size of 2–10 mm, in which the wavelet denoising method was adopted. With the designed mechanical fixture through 3D printing technology on the pipeline to inspect defects, the difficulty of collecting sufficient data could be conquered. The maximum auto-diagnosis error could be reduced to 0.25% and 1.25% for steel plate and pipeline under constant pressure, respectively, which were much smaller than those with the DPTM adopting the cross-correlation. The real-time auto-diagnosis identification feature of DPTM has the potential to be combined with AI in future work, such as machine learning and deep learning, to achieve more intelligent approaches for industrial health inspection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
科目三应助wsdshuai比采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助回复对方采纳,获得30
1秒前
可爱的函函应助Wxs66采纳,获得10
1秒前
zh1858f完成签到,获得积分10
2秒前
2秒前
花城诚成完成签到,获得积分10
2秒前
痴痴的噜完成签到,获得积分10
3秒前
Criminology34举报底层特律求助涉嫌违规
3秒前
4秒前
4秒前
老实秋寒应助David采纳,获得10
5秒前
皛燚完成签到,获得积分10
6秒前
莫小烦完成签到,获得积分10
7秒前
7秒前
科研小狗发布了新的文献求助10
8秒前
hx0107完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
Orange应助SLYXY采纳,获得10
10秒前
DJX完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
14秒前
16秒前
17秒前
pluto应助David采纳,获得10
18秒前
科研通AI6.1应助木木三采纳,获得10
19秒前
元谷雪发布了新的文献求助10
19秒前
乐乐应助皮在痒采纳,获得10
19秒前
希望天下0贩的0应助xiaoyu采纳,获得10
19秒前
小马甲应助tier3采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助jackdawjo采纳,获得10
22秒前
桐桐应助Reni采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761057
求助须知:如何正确求助?哪些是违规求助? 5527282
关于积分的说明 15398807
捐赠科研通 4897632
什么是DOI,文献DOI怎么找? 2634274
邀请新用户注册赠送积分活动 1582397
关于科研通互助平台的介绍 1537744