Data-driven rheological characterization of stress buildup and relaxation in thermal greases

流变学 流变仪 材料科学 本构方程 应力松弛 机械 剪应力 剪切速率 热的 复杂流体 剪切(地质) 压力(语言学) 复合材料 蠕动 热力学 有限元法 物理 哲学 语言学
作者
Pranay P. Nagrani,Ritwik V. Kulkarni,Parth U. Kelkar,Ria D. Corder,Kendra A. Erk,Amy Marconnet,Ivan C. Christov
出处
期刊:Journal of Rheology [American Institute of Physics]
卷期号:67 (6): 1129-1140 被引量:1
标识
DOI:10.1122/8.0000679
摘要

Thermal greases, often used as thermal interface materials, are complex paste-like mixtures composed of a base polymer in which dense metallic (or ceramic) filler particles are dispersed to improve the heat transfer properties of the material. They have complex rheological properties that impact the performance of the thermal interface material over its lifetime. We perform rheological experiments on thermal greases and observe both stress relaxation and stress buildup regimes. This time-dependent rheological behavior of such complex fluid-like materials is not captured by steady shear-thinning models often used to describe these materials. We find that thixo-elasto-visco-plastic (TEVP) and nonlinear-elasto-visco-plastic (NEVP) constitutive models characterize the observed stress relaxation and buildup regimes respectively. Specifically, we use the models within a data-driven approach based on physics-informed neural networks (PINNs). PINNs are used to solve the inverse problem of determining the rheological model parameters from the dynamic response in experiments. This training data is generated by startup flow experiments at different (constant) shear rates using a shear rheometer. We validate the ``learned'' models by comparing their predicted shear stress evolution to experiments under shear rates not used in the training datasets. We further validate the learned TEVP model by solving a forward problem numerically to determine the shear stress evolution for an input step-strain profile. Meanwhile, the NEVP model is further validated by comparison to a steady Herschel--Bulkley fit of the material's flow curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdmhv完成签到 ,获得积分10
1秒前
虚拟电子小熊完成签到 ,获得积分20
1秒前
残幻应助schahaha采纳,获得10
3秒前
momo完成签到,获得积分10
3秒前
王哈哈发布了新的文献求助10
4秒前
4秒前
janejane发布了新的文献求助10
4秒前
杨大夫发布了新的文献求助20
4秒前
Solo8792完成签到,获得积分10
5秒前
wwqc完成签到,获得积分0
6秒前
MAVS完成签到,获得积分10
7秒前
企鹅完成签到,获得积分20
7秒前
8秒前
一蓑烟雨任平生完成签到,获得积分10
8秒前
沉梦昂志_hzy完成签到,获得积分0
9秒前
10秒前
lilili发布了新的文献求助10
11秒前
12秒前
07发布了新的文献求助10
13秒前
受伤访波完成签到,获得积分10
13秒前
13026581019完成签到,获得积分10
15秒前
皮汤汤完成签到 ,获得积分10
15秒前
17秒前
YULIA发布了新的文献求助30
18秒前
Lucas应助1DDDDD采纳,获得30
18秒前
18秒前
18秒前
机智幻嫣应助欣喜的迎梦采纳,获得10
19秒前
科研通AI5应助欣喜的迎梦采纳,获得10
19秒前
20秒前
aurevoir完成签到,获得积分10
22秒前
qizhang发布了新的文献求助30
23秒前
思绪摸摸头完成签到 ,获得积分10
25秒前
Solo8792发布了新的文献求助10
26秒前
26秒前
JXDYYZK完成签到,获得积分10
27秒前
谦让的莆完成签到 ,获得积分10
27秒前
子车雁开完成签到,获得积分10
29秒前
31秒前
州巴斯完成签到 ,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671619
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779523
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610158
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093